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Translating Sound Adjectives by Collectively Teaching
Abstract Representations
MARK CARTWRIGHT and BRYAN PARDO, Northwestern University

1. INTRODUCTION

Correctly translating adjectives that describe sound (e.g. “heavy”, “tinny”, “dry”, “soothing”) can be a
difficult task [Zannoni 1997]. Resources such as the Oxford English Dictionary (OED) [Oxford Univer-
sity Press 1992], typically list the “audio sense” for only a small subset of the words commonly used
to describe sound. For example, “warm” is a very commonly used sound adjective and the OED does
not mention the audio sense. Directly translating the predominant (i.e. first) sense of a sound adjective
into another language often results in an incorrect translation. For example, when “a warm sound” is
typed into Google Translate [Google Inc. 2014], it responds with “un sonido cálido.” While the word-
for-word translation is correct, the appropriate translation to correctly express the meaning is “un
sonido profundo.” The word-for-word translation to English of “un sonido profundo” is “a deep sound,”
not “a warm sound.” As a result, people relying on current translation technology may fail to commu-
nicate while believing they have. This, for example, would make it difficult for an English-speaking
audiologist to correctly diagnose hearing problems for people whose primary language is not English.

Here, we describe a system that builds a translation map between sound adjectives of two languages:
English and Spanish. This map is built from the collective intelligence of hundreds of participants who
teach the system sound adjectives by indicating how well example sounds embody the adjectives. When
two words are both strongly embodied by the same sound examples, they are considered synonyms.
When the two words come from different languages, we consider one a translation of the other. The
more frequently a pairing between two words occurs, the more certain the translation.

2. COLLECTIVELY TEACHING THE SOCIALEQ SYSTEM

SocialEQ.org is a web-based application that learns an audio equalization curve associated with a user-
provided audio descriptor. Described in more detail in [Cartwright and Pardo 2013], this system was
designed as a tool to build a knowledge base of audio equalization concepts to be used in an intelligent
audio production system that responds to the descriptive language of the user.

To teach the system an audio equalization descriptor, participants are asked to “enter a descriptive
term in the language in which you are most comfortable describing sound (e.g. ‘warm’ for English,
‘claro’ in Spanish, or ‘grave’ in Italian), pick a sound file which we will modify to achieve the descriptive
term, then click on ‘Begin’.” Once a participant selects a descriptive term and a sound file, they are
asked rate how well each of 40 modifications of the audio file embodies the adjective. Each modified
version of the audio file is modified to alter the relative boost/cut to each of 40 frequency bands, spaced
in a perceptually relevant manner (ERB) [Glasberg and Moore 1990]. From these rated examples,
the system uses the method from [Sabin et al. 2011] to learn the relative boost/cut to apply each
frequency band to modify a new sound to make it better embody the adjective. The result is a 40-band
equalization curve learned from one participant which we call a user-concept (e.g. “Janet’s concept for
‘warm’ ”). By comparing hundreds of user-concepts one can find words that show broad agreement (the
equalization curves are similar across multiple users teaching the system the same word) within and
between languages.
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To build such a collection of user-concepts, we recruited participants through Amazon’s Mechanical
Turk. We had 887 participants who participated in a total of 2322 training sessions (one session per
learned word). We paid participants $1.00 (USD) per session, with the possibility of up to a $0.50 bonus,
determined by the consistency of their responses. Out of 40 examples in each training session, 15 were
repeats, to let us determine consistency of responses. Of the 2322 training sessions, 983 of them were
contributed by participants recruited in English and used a version of the SocialEQ system in which all
of the instructions were in English. The other 1339 sessions were contributed by participants recruited
in Spanish who used a version of SocialEQ with instructions in Spanish.

We used the same inclusion criteria as specified in [Cartwright and Pardo 2013] to remove user-
concepts from inconsistent participants (repeated sounds were labeled very differently) and those who
showed no effort (e.g. completed labeling 40 sounds in under 1 minute). This left 676 participants who
taught the system in 1602 sessions. Of these, 923 were English and 679 were Spanish, resulting in 388
unique English and 384 unique Spanish words. The median number of words contributed per partici-
pant was 1. Table I shows the top 10 adjectives in each language ranked by agreement score between
participants [Cartwright and Pardo 2013]. This is a function of how often a word was contributedNand
the inverse total variance Σ of the learned equalization curves: agreementscore = log(N)

trace(Σ)descriptor
.

Table I. Top 10 English and Spanish equalization descriptors ranked by agreement score
Rank English word Sessions Agreement Score

1 tinny 8 0.294
2 quiet 5 0.188
3 deep 6 0.164
4 light 6 0.151
5 warm 64 0.139
6 loud 26 0.137
7 heavy 15 0.124
8 dark 8 0.122
9 bright 19 0.112

10 energetic 5 0.107

Rank Spanish word Sessions Agreement Score
1 pesado 10 0.142
2 agudo 5 0.111
3 suave 23 0.100
4 bajo 5 0.094
5 claro 33 0.092
6 fuerte 18 0.083
7 dulce 10 0.080
8 tranquilo 13 0.068
9 profundo 6 0.065

10 frı́o 13 0.063

Equalization Curve for “warm”
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Equalization Curve for “profundo”
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Fig. 1. Two closely related descriptor definition models: “warm” (N=64) and “profundo” (N=6), where N indicates how many
people trained the system on the word in question.
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3. REPRESENTING EQUALIZATION CONCEPTS

We combined individual’s user-concepts into collective descriptor definitions by creating a mixture
model. We model each user-concept as a Gaussian distribution, N (µi,Σi), where µi is the learned
equalization curve of the user-concept and Σi is a diagonal covariance matrix in which the variance
for each frequency-band is set by σ2

i,k = (σk − σkri)
2 where σk is the sample standard deviation of

frequency-band k for the equalization curves of all descriptors, and ri is the ratings consistency for
the session that learned user-concept i. Here we are using the ratings consistency as a measure of the
uncertainty of the user-concept, mapping a consistency range of [0, 1] to a per-frequency-band variance
range of [σk, 0]. We then model each descriptor definition as follows:

P (x) =
1

N

N−1∑
i=0

N (µi,Σi) (1)

where N (µi,Σi) is the distribution for the ith user-concept.
Figure 1 shows the models of two descriptors. Here, the vertical dimension is the relative boost or cut

of a frequency associated with that sound quality. The horizontal dimension is the frequency. Lighter
values indicate a greater probability that a given boost or cut correlates with the descriptor.

4. MAPPING BETWEEN ENGLISH AND SPANISH
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Fig. 2. Hierarchical clustering of the 10 descriptors with the highest agreement scores in each language.

Given two words represented, each represented by a mixture model (Figure 1), we can use a symmet-
ric approximate KL-divergence [Hershey and Olsen 2007] as a distance measure between two words.
To determine the relationships of the high-agreement words from Table I, we performed agglomera-
tive hierarchical clustering using the “group average” algorithm [Hastie et al. 2001] and plotted the
dendrogram in Figure 2. From this plot, we can see that the models displayed in Figure 1 (“warm” and
“profundo”) are closely related despite that “warm” typically translates to “cálido” in Spanish.

5. CONCLUSION

We presented a system to build an audio descriptor translation map between English and Spanish
using data collected from hundreds of people. This provides an alternative to dictionary-based and sta-
tistical machine translation. This method of translating by collectively teaching intermediate abstract
representations can potentially be extended to other domains, uncovering unknown relationships be-
tween languages. This work was supported by NSF Grant Nos. IIS-1116384 and DGE-0824162.
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