

INCREASING DRUM TRANSCRIPTION VOCABULARY USING DATA SYNTHESIS

Mark Cartwright and Juan Pablo Bello Music and Audio Research Laboratory New York University

http://www.markcartwright.com

Problem

Most Automatic Drum Transcription (ADT) algorithms are limited to simply onset times of 3 classes:

- I. Bass Drum (BD)
- 2. Snare Drum (SD)
- 3. Hi-Hat (HH)

Example:

Goal

• Increase vocabulary to onset times of 14 drum classes:

Goal

ADT Datasets

~33,000 onsets / 2 hours of 3-class data (RBMA, IDMT/SMT)

~33,000 onsets / ~1.5 hours of > 3-class data (ENST/MDB)

Building the S******* Drum Dataset (SDDS) The Sounds

- Labeled samples from 8 drum sample libraries
- Split toms into low, mid, high based on pitch, spectral centroid
- Split dataset into 4000 train / 2000 test samples

Kick		Kick	
Snare		Snare	
Snare Rim		Snare Rim	
Crash		Crash	
Ride		Ride	
Open Hat		Open Hat	
Closed Hat		Closed Hat	
		Low Tom	
Tom		Mid Tom	
		High Tom	
Conga / Bongo		Conga / Bongo	
Clap		Clap	
Bell		Bell	
Clave		Clave	

Building the Synthetic Drum Dataset (SDDS) The Sounds

- Labeled samples from 8 drum sample libraries
- Split toms into low, mid, high based on pitch, spectral centroid
- Split dataset into 4000 train / 2000 test samples

Kick		Kick	
Snare		Snare	
Snare Rim		Snare Rim	
Crash		Crash	
Ride		Ride	
Open Hat		Open Hat	
Closed Hat		Closed Hat	
Tom		Low Tom	
		Mid Tom	
		High Tom	
Conga / Bongo		Conga / Bongo	
Clap		Clap	
Bell		Bell	
Clave		Clave	

Building the Synthetic Drum Dataset (SDDS) The Sounds

- Labeled samples from 8 drum sample libraries
- Split toms into low, mid, high based on pitch, spectral centroid
- Split dataset into 4000 train / 2000 test samples

Building the Synthetic Drum Dataset (SDDS) The Rhythms

• 60k measures of percussion MIDI files (50k train / 5k test / 5k validate)

Building the Synthetic Drum Dataset (SDDS) Augmentation and "Accompaniment"

- Augment to 210k (200k train / 5k test / 5k validate) w/ small pitch shifts, added pink noise, and "*harmonic noise* accompaniment":
- Solo harmonic instrument recording
- "Smear" in time (fwd / bkwd reverb)

• Mix with drum track

Combined Datasets

	RBMA	SMT	enst	MDB	SDDS
Hours	1.67	0.51	1.28	0.23	467
Accomp.	Х	X		X	sort of
14-voice Onsets			×	×	×
3-voice Onsets	X	×	×	×	×
Beats	Х				Х

Model

Training with Heterogeneous Outputs

- Mask outputs not in use for each example
- Use round-robin sampling with Pescador¹ to ensure all outputs used in each mini-batch of 8:

- Minimize weighted combination of binary cross-entropy losses based using weights computed by activation entropy
- 3-fold CV splits for the small real music small datasets 25% validation / 75% testing in each split

Experiments

Variables:

- Training data
 - Real music (RBMA, SMT, ENST, MDB)
 - Synthetic (SDDS)
 - Recorded + Synthetic
- Model capacity
 - "Small" (as described)
 - Large (more conv filters, more BLSTM units)
- Outputs
 - Multi-task
 - Single-task (w/ limited data)
- Class-weighting
 - No weighting
 - Weighted by activation entropy

Conclusion

- Lots of mediocre synthetic data can improve performance on both overall performance and uncommon classes
- However, it must be used in conjunction with real music data
- Multi-task learning doesn't seem to help for large-vocab transcription, but does help in the auxiliary task of downbeat/beat tracking

Download the trained models at https://github.com/mcartwright/dafx2018_adt