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ABSTRACT 

Annotating rich audio data is an essential aspect of train-
ing and evaluating machine listening systems. We approach 
this task in the context of temporally-complex urban sound-
scapes, which require multiple labels to identify overlapping 
sound sources. Typically this work is crowdsourced, and 
previous studies have shown that workers can quickly label 
audio with binary annotation for single classes. However, 
this approach can be difcult to scale when multiple passes 
with diferent focus classes are required to annotate data 
with multiple labels. In citizen science, where tasks are of-
ten image-based, annotation eforts typically label multiple 
classes simultaneously in a single pass. This paper describes 
our data collection on the Zooniverse citizen science plat-
form, comparing the efciencies of diferent audio annotation 
strategies. We compared multiple-pass binary annotation, 
single-pass multi-label annotation, and a hybrid approach: 
hierarchical multi-pass multi-label annotation. We discuss 
our fndings, which support using multi-label annotation, 
with reference to volunteer citizen scientists’ motivations. 

CCS CONCEPTS 

• Human-centered computing → Computer supported 
cooperative work; Empirical studies in collaborative 
and social computing; • Information systems → Speech 
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/ audio search; • Applied computing → Sound and music 
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1 INTRODUCTION 

Annotating rich audio data is an essential aspect of training 
and evaluating machine listening models, which have the 
potential to enable powerful applications in diverse domains 
such as bioacoustic monitoring, urban noise monitoring, elec-
tric vehicle sensing, assistive technologies, and more. This is 
a difcult and time consuming task, due in part to audio’s 
temporal dimension. We approach this problem from the con-
text of a New York City-based project that is working closely 
with city agencies such as the Department of Environmental 
Protection; and which aims to monitor, analyze, and mitigate 
urban noise pollution using a smart sensor network powered 
by machine listening models that detect noise sources [5]. 
Noise pollution is a major concern to many urban residents 
and has many negative efects, e.g. on citizens’ health [4, 21] 
and students’ learning [4]. Because of these societal concerns, 
we are exploring citizen science-based inquiry, including our 
approach to training machine listening models, and a key 
task is to establish how best to design tasks to acquire multi-
label audio annotations with volunteers. Since our aim is for 
high ecological validity, this study was not conducted as a 
controlled experiment, but rather we undertake an analysis 
of a real-world data collection solving a real-world audio 
annotation problem. This activity took place on Zooniverse, 
the most widely used citizen science platform, and as such, 
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our focus is on the authentic behaviors of volunteering citi-
zen scientists, which may difer from those of paid workers 
on commercial platforms. Best practice for crowdsourced 
audio annotation remains understudied, with prior research 
typically focusing on paid crowdworkers rather than vol-
unteer citizen scientists. In this paper we make some initial 
steps towards addressing this area of concern. 
Previous research recommends breaking complex tasks 

into small units of work for paid crowdsourcing [31]. In 
large-scale audio annotation eforts, this has resulted in paid 
crowdworkers performing single-class binary-labeling tasks 
[20, 22]. But citizen scientists and crowdworkers have difer-
ent motivations, and in online citizen science projects, where 
audio annotation is rare, image annotation typically adopts a 
multi-labeling approach [34, 51]. However, like video annota-
tion, annotating audio is more complex than annotating im-
ages due to the addition of a temporal dimension; and while 
full multi-label annotations for N classes can be constructed 
from N binary class annotations, this does not scale well. 
Should researchers follow the norms of citizen science image 
annotation (multi-label) when collecting multi-label audio 
annotations with volunteers? Or those of crowdsourced au-
dio annotation with paid crowdworkers (multiple binary-
label)? What are the efects on annotation throughput and 
quality of adopting these contrasting approaches? Two pre-
vious studies point in contrasting directions. In [22], a pilot 
study indicated that crowdworkers found a multi-label audio 
annotation task difcult, were unhappy, and had low annota-
tor agreement. However, in [50], a study on video annotation 
with crowdworkers found that multi-label annotation tasks 
resulted in higher quality annotations than those from binary 
annotation tasks. 
This paper contributes to the literature on best practices 

for crowdsourced audio annotation, and seeks to answer 
these questions, by comparing diferent annotation task types 
on the Zooniverse online citizen science platform [1]. We 
compare multiple-pass binary annotation, single-pass multi-
label annotation, and a hybrid approach: hierarchical multi-
pass multi-label annotation; in work from the early stages of 
our urban soundscape annotation campaign. We present an 
analysis of the throughput of the three diferent annotation 
task types and a sensitivity analysis on the efect of aggre-
gation variables on annotation quality. Our results suggest 
that practices developed for crowdsourced populations may 
not translate to volunteer-based populations. 

2 RELATED WORK 

In the past decade, there have been several large-scale, multi-
label and multi-class paid-crowdsourcing eforts to anno-
tate media for training machine learning models, e.g. Ima-
geNet (14M images, 20k classes) [15], COCO (328k images, 91 
classes)[33], Places (10M images, 434 classes) [56], AudioSet 

(1.8M audio recordings, 636 classes) [20], and OpenMIC-2018 
(20k audio recordings, 20 classes) [22]. While each has taken 
a slightly diferent approach to suit their media, they all use 
weak search engines [15, 20, 33, 56] or classifers [22] to gen-
erate candidate sets which are then verifed by humans with 
binary [15, 20, 22, 56], limited multi-label [20], or hierarchi-
cal multi-label [33] annotation. Of these eforts, AudioSet 
[20] and OpenMIC-2018 [22] are the only audio annotation 
eforts. It is also worth noting that AudioSet annotators were 
exposed to both audio and accompanying video during an-
notation because they found it too difcult with audio alone. 
COCO [33] is the only dataset with full multi-label anno-
tations, and required 70k worker hours to complete image 
segmentation and labeling. 

Because of the immense human efort required, researchers 
have sought to optimize multi-class and multi-label crowd-
sourced image annotation [7, 12, 13, 16, 32], often with ap-
proaches that break larger multi-label tasks into small sub-
tasks. In audio annotation, studies have typically focused 
on the efects of sound visualizations rather than trade-ofs 
between binary and multi-label annotation when investigat-
ing rapid methods [53] and best practices [10]. However, a 
small-scale study using data labeled by experts rather than 
through crowdsourcing indicates that sound event detec-
tion accuracy is higher when using a single model trained 
on full multi-label data rather than aggregating multiple 
single-class models trained on binary data [8]. For video 
annotation, which like audio has the additional complex-
ity of a temporal dimension, research has indicated both 
that breaking annotation into smaller subtasks is wasteful 
[50], and also conversely that performance and annotator 
satisfaction increase when annotating one object rather than 
multiple objects, (although error accumulated in sequences 
of micro-tasks largely negated this fnding) [54]. 
All of the above annotation eforts and studies were per-

formed with paid crowdworkers. While intrinsic motivations 
can afect the quantity [11] and quality [46] of paid crowd-
work, the primary motivation of paid crowdworkers is still 
payment and therefore extrinsic [30]. It’s therefore unclear if 
the fndings of studies using paid crowdsourced annotation 
will translate to annotation with citizen scientists, who are 
not motivated by payment. Viewing the problem from the 
opposite direction, [36] show that while paid crowdwork-
ers can complete labeling tasks with comparable quality to 
volunteer citizen scientists, they are also highly sensitive to 
changes in payment method. 

Zooniverse [1], the largest online citizen science platform, 
has hosted several large image annotation projects, most 
notably Galaxy Zoo (900k images, 6 classes) [34] and Snap-
shot Serengeti (1.2M image sets, 48 animal presence classes) 
[51], but audio annotation projects on the platform are rarer 
and smaller in size [35, 48]. On the Zooniverse platform, 



image-based projects typically use full multi-label annota-
tion. Although the initial Galaxy Zoo project was limited 
to six classes, there are now several projects inspired by 
Snapshot Serengeti that have on the order of 50 classes [1]. 
Unlike paid crowdsourcing, citizen science relies on vol-

untary eforts of contributors. Volunteers typically express 
multiple motivations [42–44], which change dynamically 
through a project’s temporal shifts [47]. Typically, online citi-
zen science projects have skewed participation patterns, with 
a small number of highly motivated volunteers contributing 
the majority of work [19]. The quantity of online volunteer 
contributions correlates with collective-, norm-oriented-, 
reputation-, and intrinsic- motivation; while contribution 
quality responds positively to collective- and reputation-
motives [40]. Volunteers’ individual contributions may be in-
creased through highlighting instances of novelty [25]. The 
importance of intrinsic motivations highlights a need for 
engaging participation mechanisms, and association with a 
project’s aims helps motivate new volunteers [39]. Where 
volunteers are drawn from a particular community, motiva-
tions for engagement in citizen science closely refect moti-
vations for community membership of that community and 
its core activities [55]. 

The desire to learn about a particular topic is an important 
motivator in both online [42, 43] and in-real-life [18] citizen 
science, as is the desire to contribute to “authentic” scientifc 
research [38]. In addition to knowledge acquisition, sharing 
new knowledge can motivate and sustain engagement [26]. 
Other methods of motivating sustained engagement include 
competition amongst volunteers and gamifcation of citizen 
science activities [6, 24, 41]. Such regular engagement with 
a project builds community membership, and leads to task 
aptitude and familiarity; while task difculty and boredom, 
and competing priorities are barriers to contribution [28]. 
Other factors that impact on volunteers’ engagement, both 
positively and negatively, include a project’s coordination 
practices and the volunteer’s previous domain experience 
[17]. In addition, scientists’ concerns about data quality and 
interpretation, and wider ethical concerns about visibility, 
authorship and attribution [14, 45], can lead to tension be-
tween the motivations and epistemic contributions of citizen 
science participants as individuals and their status within 
a collective distributed efort [29]. We build on this litera-
ture by investigating best practices for crowdsourced audio 
annotation with volunteer citizen scientists. 

3 DATA COLLECTION 

Platform 

Zooniverse is the largest platform for online citizen science 
projects [1], ofering a ready-made community of motivated 
volunteers from which to recruit. While this facilitates our 

aim of studying the authentic behaviors of volunteering 
citizen scientists, the Zooniverse platform is designed for 
real-world data collection and not for controlled experiments, 
and researchers therefore have limited facility for control-
ling variations over the presentation of their tasks. Also, 
during the design stage of this research, we were in close 
contact with expert Zooniverse moderators who provided 
informed advice, suggesting practical compromises between 
ensuring that primary data were collected and enriching 
these primary annotation data with user-focused data. For 
example, this expert advice included removing links to exter-
nal questionnaires in order to “lower the barrier to entry as 
much as possible”. However as an alternative, the Zooniverse 
platform does enable researchers to view more qualitative 
participant responses through its ‘Talk’ boards. Suggestions 
such as these highlight tensions between eliciting real-world 
annotation with citizen science volunteers and gathering 
rich participant data. Because of factors such as this, our 
comparison of multiple annotation task types in the early 
stages of our data collection should be considered more akin 
to A/B testing than strictly controlled experimentation. 

Audio data 

Our audio data consist of 10 second clips from two distinct 
sources, and represent 22 classes of sound sources. The frst 
dataset consists of audio taken from selected YouTube video 
clips, where the sound source was identifed, and additionally 
confrmed by members of our research team. These provided 
ground truth for our analysis. The second were recordings 
selected from amongst the 30 years’ worth of audio data 
collected by 50+ sensors installed in busy locations around 
New York City [5]. The 22 classes of sound sources that make 
up our labeling taxonomy are derived from requirements 
requested by the city’s department of environmental protec-
tion, and based on its legally enforceable noise code. They 
include examples of engines of diferent sizes, construction 
machinery and tools, human and animal vocalizations, music, 
and vehicle alert signals and sirens. We selected 2 examples 
for each class from the YouTube dataset, and 3 examples from 
the dataset of sensor recordings, creating a total of 110 10 
second audio clips. The 3 examples selected from the sensor 
data were curated by members of our research team from 
an initial sample of 30 examples automatically selected for 
each class using “VGGish” embedding-derived audio features 
[27]. 

Tasks 
Volunteers were randomly presented with 1 of 3 task types: 1) 
binary-labeling, 2) one-stage multi-labeling, and 3) two-stage 
hierarchical multi-labeling. All volunteers were presented 
with the same tutorial and feld guide to familiarize them-
selves with examples of each sound-source class. In all three 



(a) Accompanying sound visualization 

(b) Binary (c) Multi-label 

Figure 1: Screenshots of the binary and multi-label annota-
tion tasks on Zooniverse along with the spectrogram sound 
visualization shown to annotators. 

task types, the audio was presented both aurally and visually 
(using a spectrogram representation; see Figure 1a). 

In the binary labeling task (see Figure 1b), volunteers were 
asked to decide whether a single suggested sound-source 
class was present or not in the recording. This task type 
provided both positive and negative labels explicitly. 

In the one-stage multi-labeling task (see Figure 1c), volun-
teers were presented with a list of 30 class labels and an audio 
clip, and were asked to select all the sound-source classes 
present in the audio. The list of label options included our 
22 sound-source classes plus labels for unknown or uncer-
tain examples of the “superclasses”; e.g. engines, construction 
machinery, or alert signals. This task type provided positive 
labels explicitly and negatively labels implicitly. Previous 
studies [50] indicate that requesting explicit negative labels 
reduces both precision and recall, and increases task comple-
tion time in a multi-label task. 
In the two-stage hierarchical multi-label task, each stage 

was undertaken separately and by a diferent volunteer. In 
stage 1, the audio was presented to a volunteer alongside 
a list of 9 superclass labels; e.g. engines, or powered sawing 

Task Type Unanimous Agreement Pct. 
Binary 
Multi-label 
Hrchl. Multi-label Stg 1 
Hrchl. Multi-label Stg 2 

81% 
91% 
79% 
65% 

Task Type Krippendorf’s α (95% CI) 
Binary 
Multi-label 
Hrchl. Multi-label Stg 1 
Hrchl. Multi-label Stg 2 

0.52 [0.46, 0.58] 
0.53 [0.44, 0.60] 
0.45 [0.37, 0.52] 
0.45 [0.35, 0.54] 

Table 1: Annotator agreement. 

tools. Identifcation of sounds in this stage provided a flter 
for possible class labels. For each selected superclass in stage 
1, we posted a stage 2 task in which the same audio clip was 
presented alongside the sublist of our 22 class labels that 
correspond to the superclass. For example, if the audio had 
been identifed as containing engine sounds in stage 1, the 
list of possible labels shown in stage 2 would include: large-
sounding engine, medium-sounding engine, small-sounding 
engine, other/unknown engine, artifcial interference noise, and 
other/unknown sound. Stage 2 tasks were undertaken at a 
later date, and the audio was presented to a diferent volun-
teer. This task type provided positive labels explicitly and 
negative labels implicitly. We included this task as a compro-
mise between the multi-labeling and binary labeling tasks 
— it requires fewer sound-source classes to be annotated si-
multaneously and possibly fewer sound-source classes to be 
annotated overall for full multi-label annotation. 

4 ANALYSIS 

We collected at least 5 annotations per recording for the 
multi-label task and both stages of the hierarchical multi-
label task and at least 3 annotations per recording for the 
binary annotation task, from a total of 339 unique volunteers. 
We limited our analysis to these minimums. It was imprac-
tical to collect more than 3 annotations for the binary task, 
due to it’s poor scalability. The annotator agreement for all 
three task types is presented in Table 1. We also downloaded 
the comments and messages that volunteer citizen scientists 
left on the Zooniverse ‘Talk’ boards as a way of approaching 
user-focused data. Because there were too few of these mes-
sages to undertake a detailed qualitative analysis, we have 
instead included example comments in our Discussion, as 
a way to illustrate particular points regarding Zooniverse 
volunteers’ responses to the diferent annotation approaches, 
and not as study fndings in their own right. 



Multi-label

Hrchl. Multi-label

Binary
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1.44

1.36

Sensor Recordings

Classes
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Specific

Figure 2: The mean number of positive labels generated in 
a full multi-label annotation. Other/Unknown indicates the 
catch-all classes in the multi-label annotation tasks. 

Annotation throughput 
We defne the throughput of an annotation task as the rate of 
label generation. This is a function of the number of volun-
teers, the quantity of labels that they generate in a single task, 
the speed at which they complete a task, and the number 
of annotation tasks they are motivated to complete. Maxi-
mizing this measure helps collect data quickly and progress 
research. It also respects the time volunteer annotators freely 
give to the project as productive contributors. Our analysis 
focuses on the quantity of positive labels generated and the 
speed of task completion in response to the annotation task. 
To calculate task completion times, we computed the time 
diference between annotation tasks submitted by the same 
volunteer and removed outliers in the top 5th percentile, 
which may represent diferent annotation sessions. 

The binary annotation task generated over twice as many 
positive labels per full multi-label annotation as the multi-
label annotation tasks, (see Figure 2). In addition, as shown in 
Figure 3, it took about twice as long to complete an individual 
multi-label annotation task (32.81 s, 95% CI [30.80, 34.86]) as 
it did an individual binary annotation task (14.06 s, 95% CI 
[13.74, 14.38]). When scaled up for 22 classes, it took more 
than 9 times as long to annotate a full multi-label annotation 
using binary labeling tasks (see Table 2). Therefore, if full 
annotations are needed, multi-labeling tasks have higher 
throughput; but if only binary annotations are needed, the 
two task types have comparable throughput. 

Annotation quality 

In addition to maximizing throughput, we also want high 
quality labels. To measure quality, we calculated the preci-
sion, recall, and F-measure on aggregated annotations of the 
YouTube recordings, since these have positive ground-truth 
labels. However, we also need negative ground-truth labels 

Task Type 22-class Ann. Time (s) (95% CI) 
Binary 308.64 [301.01, 316.09] 
Multi-label 33.54 [31.48, 35.58] 
Hrchl. Multi-label 50.66 [47.52, 53.88] 

Table 2: Mean time (in s) to complete a full 22-class annota-
tion for each type of annotation task. 

0 20 40 60 80
Time (s)

Binary
Multi-label

Hrchl. Multi-label S1
Hrchl. Multi-label S2 - Engine
Hrchl. Multi-label S2 - Impact

Hrchl. Multi-label S2 - Saw
Hrchl. Multi-label S2 - Alert

Hrchl. Multi-label S2 - Vocal
Hrchl. Multi-label S2 - Music

Time to Complete Individual Annotation Task

Figure 3: The time to complete individual annotation task 
for each annotation task type. S1 and S2 indicate stages 1 
and 2 respectively. 

to compute our metrics. These we obtained by labeling a 
limited amount of data that we had high confdence about 
ourselves. Our ground-truth contained one positive and one 
negative label for each of the 44 YouTube recording and was 
balanced to have an equal number of positives and negatives 
for each class. 
With this ground-truth data, we varied both the number 

of annotators and the voting threshold required for a positive 
label, and measured their efects on annotation quality. To 
account for the many possible combinations of annotators, 
we estimated the true positives, false positives, and false 
negatives using a sample of 1000 random combinations of 
annotators for each task type / recording pair. For example, in 
one sample of the multi-labeling task aggregated with three 
annotators and a voting threshold of two, we randomly chose 
three of the fve annotations and labeled a class as positive 
if at least two of the annotators labeled it positive. We then 
calculated the true positives, false positives, and false nega-
tives using our ground truth data, and repeated the process 
1000 times. For hierarchical multi-labeling, we performed a 
similar process but aggregated annotations at both stages, 
with the output of stage one informing the inclusion of sub-
tasks in stage two. The annotations from the subtasks were 
combined together to form a full multi-label annotation. For 
binary labeling, we aggregated binary annotations for each 
class and then combined all 22 class annotations together to 
form a full multi-label annotation. We then summed the true 
positives, false positives, and false negatives over the record-
ings to compute the quality metrics for each combination of 
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Figure 4: The quality metrics for each annotation task type while varying the the number of annotators per example and the 
minimum number of votes required for a positive label (i.e., voting threshold) during aggregation. The bands are the 95% CIs 
around the metrics, computed using 1000 bootstrap samples. 

task type, number of annotators, and voting threshold. Fig-
ure 4 shows the results of varying the number of annotators 
and the minimum voting threshold for all three task types. 
Using a three-way ANOVA, we investigated the efect 

of annotation task type, number of annotators, and vot-
ing threshold on the number of type I (false positive) and 
type II (false negative) errors for aggregate annotations. We 
computed the ANOVA directly on the type I and II errors 
rather than macro-averaged metrics because our limited 
ground-truth labels for each example and/or class could 
lead to ill-defned precision and recall metrics with macro-
averaging. For the number of type I errors, we found that 
task type (F (2, 1548) = 81.62, p < 0.001) and voting thresh-
old (F (4, 1548) = 7.15, p < 0.001) had signifcant efects, 
but number of annotators (F (4, 1548) = 1.59, p = 0.17) did 
not. There were also signifcant interactions between task 

type and voting threshold (F (6, 1548) = 13.75, p < 0.001) 
and task type and the number of annotators (F (6, 1548) = 
3.54, p < 0.01). For the number of type II errors, we found 
that task type (F (2, 1548) = 129.74, p < 0.001), number 
of annotators (F (4, 1548) = 41.94, p < 0.001), and voting 
threshold (F (4, 1548) = 103.52, p < 0.001) all had signifcant 
efects. There were also signifcant interactions between vot-
ing threshold and the number of annotators (F (6, 1548) = 
6.76, p < 0.001). 

To test where these diferences occurred, we also ran post 
hoc Tukey HSD tests (α = 0.05), but we only report difer-
ences in main efects for simplicity. For type I errors, we 
found signifcant diferences between the binary task and 
the two multi-label tasks but not between the two multi-
label tasks themselves. In addition, we only found signifcant 
diferences in voting thresholds pairs 1–2 and 2–3. For type 



II errors, we found signifcant diferences between all task 
types and all thresholds, but did not fnd signifcant difer-
ences in number of annotator pairs 1–2, 2–3, and 3–4. 
Overall, we found that with low voting thresholds, the 

binary task produced aggregate annotations with more type 
I errors (lower precision), and with high voting thresholds, 
the multi-label tasks produced aggregate annotations with 
more type II errors (lower recall). We didn’t fnd any signif-
cant diferences between the two multi-label tasks in recall, 
but we found that the hierarchical multi-label task produced 
annotations with lower recall than the multi-label task as the 
voting threshold increased. At low voting thresholds for all 
tasks, we found minimal diferences in performance when 
the number of annotators was 3 and above, but more anno-
tators was always better. The aggregate annotations from 
the multi-labeling and hierarchical multi-labeling tasks both 
attained their highest F-measures with fve annotators and 
a voting threshold of one annotator (0.96 and 0.92 respec-
tively). Whereas, aggregate annotations from binary labeling 
achieved their highest F-measure with three annotators and a 
voting threshold of one annotator (0.94). For fair comparison, 
the max F-measure of multi-label annotations aggregated 
with three annotators was 0.93. 

5 DISCUSSION 

Multi-label audio annotation is a time consuming task for 
which few studies have investigated best practices. Our anal-
ysis suggests using a multi-label annotation task, collecting 
at least three annotations per example, and aggregating them 
with a low voting threshold will deliver results equal in qual-
ity to those collected using binary labeling, and will do so 
more quickly. 
We found annotators tended to “over annotate” when at-

tending to one class at a time and to “under annotate” when 
asked to attend to many classes. In light of these tradeofs, 
binary audio annotation may be preferred when high recall 
is prioritized, for example when training a gun shot detec-
tion model for which the cost of a false negative may be 
someone’s life. And multi-label audio annotation may be 
preferred when precision is prioritized, for example when 
training an urban noise pollution detection model for which 
the cost of a false positive is an unnecessary investigation 
by a city noise inspector. When aggregated however, these 
tendencies can be balanced by adjusting the number of an-
notators and the voting threshold for each task type, making 
peak performance comparable. Also, the throughput of multi-
label annotation was higher, which is advantageous when 
training a single model with multi-label output rather than 
multiple binary-class models. Such a single model may have 
higher accuracy [8], and we suspect that this diference may 
be greater when the model must distinguish between several 
similar classes. 

With only 30 classes, we did not fnd it advantageous to use 
the two-stage hierarchical multi-label model. At low voting 
thresholds, the hierarchical multi-label task produced labels 
of similar quality to the single-pass multi-label task, but at 
high voting thresholds, the downward trend on recall is more 
extreme than in the multi-label case, due to compounding 
type II errors at each annotation stage. While we suspect that 
an advantage for the hierarchical approach may appear as the 
number of classes is increased, additional experimentation 
is required to investigate this. 
We found the unanimous vote measure, 91% for multi-

labeling and 81% for binary labeling tasks, to be higher 
that the equivalent reported by the AudioSet data collec-
tion (76.2%), indicating greater consistency between citizen 
scientists than paid crowdworkers. However, we observed 
low scores when calculating Krippendorf α agreement, indi-
cating both that annotation of urban sound is a difcult task, 
and that there is room to improve the design of our tasks. 

Limitations 
Because we are presenting a study of data collection with 
an existing community of volunteer citizen scientists on the 
most well-established platform for these activities, and be-
cause we are using an intentionally restricted audio dataset, 
the following limitations should be acknowledged with re-
spect to our analysis and fndings. 

Using the Zooniverse platform. Zooniverse is a platform de-
signed for real-world citizen science data collection, rather 
than for controlled experimentation, and because of this it 
provides researchers with only limited control over the vari-
ations with which tasks and recordings can be presented. 
Therefore this was not a controlled study, rather it was more 
akin to an A/B test of diferent designs and measuring their 
impact. However, it is also important to recognize that fnd-
ings from this study should be considered subject to the 
potentially biasing impact of the particular norms associated 
with participation in Zooniverse projects. While it appears 
to us that our fndings are at least in part a refection of vol-
unteer citizens scientists greater intrinsic motivation when 
compared to paid crowdworkers, it is also possible that they 
refect particular norms, standards, and expectations culti-
vated through volunteer participation in multiple Zooniverse 
projects over the years. As the refections of Zooniverse’s 
UX team indicate [52], norms are emerging around the prac-
tices associated with large-scale citizen science participation 
on the platform, and while it is currently and quite signif-
cantly the largest instance of such a platform, Zooniverse is 
not the only option available. Future studies might compare 
the power of these norms by running simultaneous stud-
ies on diferent platforms. For example, do the fndings of 
previous studies, which both note the difering motivations 



of volunteer citizens sciences, e.g. [42–44] and also used 
data from Zooniverse volunteers, hold true for alternative 
platforms? Another possibility is that the kind of network 
afects seen with Google, Amazon and Facebook may ap-
ply in a citizen science context to Zooniverse. Either way, 
the choice of platform for similar studies in the future will 
remain an important consideration. These norms and prac-
tices also impacted our collection of user-focused data, as 
we followed the advice of expert moderators and chose to 
remove links to external questionnaires so as not to raise 
barriers to volunteers’ participation. Instead we hoped that 
data downloaded from the comments and messages that vol-
unteer citizen scientists left on the Zooniverse ‘Talk’ boards 
would be sufcient to provide similar insight. As it turned 
out, there were too few of these messages to undertake a 
detailed qualitative analysis, and so these merely provide 
illustration rather than fndings in their own right. Data from 
additional questionnaires would have helped us assess the 
preferences and motivations of the annotators, and enriched 
our user data. However, in striving for ecological validity 
this was a tradeof we chose to make, exemplifying tensions 
between eliciting real-world annotation with citizen science 
volunteers and gathering rich participant data. 

Generalizability to other sources of audio data. There are 
also limitations of our study due to our data. Our ground 
truth data were limited to a small selection of urban sound-
scapes which may reduce the generalizability of our results 
to other audio recordings. However, soundscapes such as 
these, dominated by technological and human sounds, are 
typically evaluated to be in the chaotic quadrant of Swedish 
Soundscape-Quality Protocol [2, 3]. In a previous study [10], 
we found that as urban soundscapes become more complex, 
annotators’ precision stays about the same but their recall 
goes up. Therefore, while future a study is necessary to as-
sess how our current results will translate to other types of 
soundscapes or audio recordings, the results from our previ-
ous study provide some insight into how our current results 
may translate to other urban soundscapes. A general study 
of audio recording annotation would likely require a dataset 
several orders of magnitude greater in size and would not 
have been feasible in our study design. The ground-truth 
data were also limited due to the incompleteness of their la-
bels. The efects of this can be seen in the surprisingly perfect 
precision results for the multi-label annotation task. With 
complete ground-truth labels, we suspect that the metrics 
would be lower but the trends would remain the same. 

Comparison to previous studies 
Limitations aside, our analysis both supports and contrasts 
prior studies on the annotation of temporal media. We see 
how annotators “over annotate” in binary labeling tasks and 

“under annotate” in multi-labeling tasks, similarly to [50]; 
and that errors often compound when an annotation task 
is broken down into a series of dependent sub-tasks, like 
[54]. However, our fndings oppose [22] who suggested that 
a multi-labeling task resulted in lower annotator agreement 
and unhappier crowdworkers. In contrast, messages from our 
Zooniverse project’s ‘Talk’ boards include comments from 
volunteers who found the binary task limiting; while no 
comments suggest that the multi-label task was too complex 
or time-consuming. There are too few messages to undertake 
a qualitative analysis, and so we include comments from 
three volunteers as illustration, and in order to spark ideas 
for future research (N.B. the animal diary and animal camera 
trap projects in the quotes are referring to Snapshot Serengeti 
[51] where volunteers are asked to identify wildlife from 
motion-triggered cameras left in the countryside): 

“There might be a better way than is that X sound 
yes or no to classify quicker. People will get tired of 
listening to sound clips faster than other quick op-
tions, like the animal diaries. You want to squeeze 
as much data out of each audio clip.” 

“I hear drums, observer/audience yelling applause, 
at least one large size dog that is very unhappy 
about the noise. This takes place outside. I have 
no way to label more than two features, so it will 
probably be more frustrating than I can deal with 
to participate.” 

“In my opinion, this project should use the same 
model as the animal camera trap projects, that is, 
have a list of sound categories that one can click 
on for each clip, and give the opinion to choose 
more than one category.” 

There are likely to be a range of other factors contributing 
to our fndings, each of which merits inquiry beyond the 
scope of this particular discussion. 

Recognition over recall. For example, having the full range 
of classifcation options in the multi-label task immediately 
visible and directly available may be signifcant, bringing 
to mind previous HCI discussion around the relative im-
portance of recognition over recall with regards to direct 
manipulation interfaces (e.g., [9, 23, 49]). 

Motivations of volunteer citizen scientists. Another important 
factor may be the difering motivations of volunteer citizen 
scientists who are likely to be driven by intrinsic motivations 
[19, 40, 42], and paid crowd-workers who are primarily mo-
tivated by fnancial incentives [30, 37, 46]. This may explain 
why binary labeling tasks, in which individual instances can 
be completed quickly, have appeared to be more efective in 
previous audio annotation undertaken by crowd-workers; 



and why, in contrast to this, our fndings suggest that multi- 7 ACKNOWLEDGMENTS 
labeling tasks may be more efective in the context of audio 
annotation with volunteer citizen scientists. 

Volunteers’ contributions and accomplishments. A refective 
case study highlighting insights the Zooniverse UX team 
gained as the platform developed [52] further helps us to 
frame or fndings. For instance, audio tasks on the Zooni-
verse platform are considered less likely to sustain volun-
teers’ participation than image-oriented tasks, highlighting 
the importance of designing workfows that maximize the 
impact of individual contributions. A second insight is that 
it is important for volunteer contributors to gain a sense of 
accomplishment, and in more monotonous tasks (such as 
ours) this should be achieved quickly. While on the surface 
the simple binary task is completed more quickly, it is pos-
sible that annotators will be presented with a succession of 
examples in which the sound in question is not present. If 
accomplishment is more closely associated with positively 
identifying sounds than negatively identifying their absence, 
it is likely that the binary task becomes demotivating, and 
that the multi-label task, which enables contributors to make 
a positive identifcation in every case, leads to earlier and 
more consistent feelings of accomplishment. A third insight 
is that volunteer discussion and collaboration, beyond the 
initial requirements of the task, has resulted in a number 
of citizen-led discoveries. This indicates that citizen scien-
tists are not necessarily looking for simple tasks that can be 
completed as quickly as possible. Rather, they may be moti-
vated to extend a task, investigate further, and gain a deeper 
understanding. Having the full range of classifcations op-
tions visible may prompt sharing and discussion, which are 
important to this process of social inquiry. However, one 
important caveat to this discussion is that our tasks required 
only a limited number of classifcation options. An increase 
in the number of categories from which labels are selected 
could quickly make multi-label tasks, in which all options 
were always visible, extremely challenging. 

6 CONCLUSION 

This paper contributes to our understanding of multi-label 
audio annotation crowdsourced with volunteer citizen sci-
entists. We have described how a multi-labeling approach to 
annotation can result in annotations at a higher throughput 
and of comparable overall quality (as measured by F-score) 
to those obtained using binary-labeling, the technique most 
commonly used with paid crowdworkers. This supports pre-
vious work on image annotation with citizen scientists, and 
reminds us of the important diferences between participants 
who volunteer their time and efort freely, and paid crowd-
workers, which we unpack in light of insights gained from 
crowdsourcing, citizen science, and HCI literature. 

We would like to thank all the Zooniverse volunteers who 
continue to contribute to our project. This work is supported 
by National Science Foundation award 1544753 (https://www. 
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