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ABSTRACT 
Systems able to find a song based on a sung, hummed, 
or whistled melody are called Query-By-Humming 
(QBH) systems. Tunebot is an online QBH web service 
and iPhone app that connects users to the desired re-
cording on Amazon.com or iTunes. Tunebot’s search-
able database is composed of thousands of user-
contributed melodies. Melodies are collected from user 
queries, sung contributions and through contributions 
from on-line play of an associated iPhone Karaoke 
game: Karaoke Callout. In this paper we describe the 
architecture and workings of the paired systems, as well 
as issues involved in building a real-world, working 
music search engine from user-contributed data.  

INTRODUCTION 
Music audio is one of the most popular categories of 
multimedia content. Examples include the song reposi-
tories of Apple’s popular iTunes 
(www.apple.com/itunes), the indie-music site CD Baby 
(www.cdbaby.com) and Amazon (amazon.com). These 
music collections are indexed by such metadata as title, 
composer, and performer. Finding the desired recording 
with this indexing scheme can be a problem for those 
who do not know the metadata for the desired piece.  

If the user has access to a recording of the desired audio 
(e.g. it is currently playing on the radio), then an audio 
fingerprinting system, such as Musiwave [1] or Shazam 
[2] can be used. Such systems require the query exam-
ple be a (possibly degraded) copy of the exact recording 
desired. This makes audio fingerprinting unsuitable for 
any situation where the user is unable to provide a por-
tion of the exact recording sought (e.g. the song ended 
on the radio before a search could begin).    

Another approach is to identify a song based on enter-
ing its lyrics into a standard text-based search engine. 
This is a relatively mature field with successful com-
mercial search engines (e.g. Google) already available. 
It is not, however, applicable to pieces of music that 
have no lyrics, or in situations where the user remem-

bers the melody but not the words.  

In this work, we concentrate on the situation where the 
user queries a system by singing or humming some por-
tion of the song (“What is the name of the song that 
goes like this?”).  Song identification systems that take 
sung or hummed input are known as query-by-
humming (QBH) systems [3-4]. These are an example 
of melodic search engines. Melodic search engines (in-
cluding QBH and rhythmic search) have received much 
attention in recent years [5-14] and use a melodic frag-
ment as a query, entered as musical notation, through a 
virtual piano keyboard or sung into a microphone.  

Most published research in QBH has focused on the 
matching algorithms and distance measures for melo-
dies. While this is important, there are other technical 
and scientific challenges that must be surmounted to 
build an effective QBH system ready for real-world 
deployment. Example issues include: creation of a large 
database of relevant search keys, handling large num-
bers of users, speeding search as the database goes from 
hundreds to hundreds of thousands of melodies, and 
updating the database and matching algorithms after 
deployment in a seamless way.  

Our solutions to these problems are embodied in Tune-
bot, an online QBH web service that connects users to 
the desired recording on Amazon.com or iTunes. Tune-
bot’s searchable database is composed of thousands of 
user-contributed melodies. Melodies are collected from 
user queries, sung contributions and through contribu-
tions from on-line play of an associated Karaoke game: 
Karaoke Callout. In this paper we describe the architec-
ture and workings of the paired systems, as well as is-
sues involved in building a real-world, working music 
search engine from user-contributed data. 

TUNEBOT 
We embody our solutions to the problems of real-world 
QBH in an on-line web service called Tunebot (tune-
bot.org). Tunebot lets the user search for music by sing-
ing a bit of it (with or without lyrics) as a query. 

The system does not require hand-coded search keys, 
since it automatically updates the database with new 
search keys derived from user queries and contribu-
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tions. To speed data collection and encourage collabora-
tive participation from the public, we integrate Tunebot 
with an online social music game (Karaoke Callout) 
that encourages collaborative tagging of audio with new 
search keys [15].  Karaoke Callout is a Game With A 
Purpose [16] that helps build our knowledge base of 
songs. Users may also register with our website and 
freely contribute sung examples in a manner similar to 
the OpenMind initiative [17]. 

User Interaction  

Tunebot is available as a web service and is currently in 
beta testing as an iPhone application. The user interac-
tion in both the web and iPhone versions is identical:   
1) Sing, 2) Choose. The user simply sings a portion of 
the desired song to Tunebot. The system returns a 
ranked list of songs. Each song is playable by a simple 
click. While the song is playing, the system presents a 
dialog box asking if this is the correct piece of music. If 
the user clicks “yes,” the query is stored in our database 
as a searchable example for that song. The user is then 
connected to either Amazon.com or iTunes where the 
music may be purchased. Figure 1 illustrates this inter-
action on the iPhone version of Tunebot. Figure 2 illus-
trates the Flash-based web interface for Tunebot. 

 
Figure 1. Screen shots of the iPhone interface for 
Tunebot. 

Searchable Database Construction 

Creating searchable keys that can be queried by singing 
is non-trivial. Hand-keying a database with thousands 
or millions of documents consumes prohibitive amounts 
of effort, as does updating and vetting such a database 
as music is created and tastes change. Thus, it is impor-
tant to develop good methods to create and vet percep-
tually relevant search keys for music audio that allow 
the creation of a large music database indexed by musi-
cal content. This database must be expandable after 
deployment so the system may search for new music 
introduced as time goes by. For a system to scale, this 
must be done with minimal training and minimal over-
sight by human operators.  

We do not currently use existing MIDI files or extrac-
tion of melodies from the original polyphonic audio. 
Automated transcription of polyphonic commercial 
recordings is still not sufficiently robust to provide good 
searchable melodies. The symbolically encoded data-
bases available to us do not provide the coverage of 
modern pop, and rock tunes that our users tend to 
search for. Further, as user tastes change and new songs 
are released, a real working system must have the abil-
ity to constantly add songs to the database after de-
ployment. We address these issues by turning to the 
users of the system for contributions. 

 
Figure 2. Screen shot of the Flash-based web in-
terface for Tunebot. 

The database for Tunebot uses searchable melodic keys 
derived from a cappella performances contributed by 
users as a result of playing Karaoke Callout, through 
use of the Tunebot search engine, and by logging in as a 
contributor and singing melodies to the system.  Search 
keys are encoded as described in the section Matching 
and Encoding.  

As of this writing, the Tunebot database contains rough-
ly 11,000 examples for over 3,100 songs. Nearly 900 
songs have 5 or more examples associated with them, 
and over 100 songs have 10 or more examples. The 
database is constantly growing as users contribute new 
songs and new examples for existing songs. To 
illustrate the rate of growth of the database, 5,053 ex-
amples representing 1,017 new songs were added to the 
database in the period from January 1, 2010 to April 15, 
2010. At the current rate of growth, the size of the data-
base should more than double by the end of this year 
compared to its size at the end of 2009.  

System Overview 

The Tunebot architecture is divided into three parts: (1) 
the client, (2) the server-side front-end, and (3) the 



Proceedings of the SMC 2010 - 7th Sound and Music Computing Conference, 21-24 July 2010, Barcelona - Spain 

server-side back-end. These components are shown in 
Figure 3.  

 
Figure 3. An overview of the Tunebot system. 

The client-side is most typically a web browser.  In this 
scenario, a Flash plug-in runs on the client side in the 
browser to record the audio of user queries and contri-
butions and send it to the server.  

The server-side front-end consists of two parts: (1) a set 
of PHP scripts served by an Apache Web Server, and 
(2) the Flash Media Server. The server-side front-end is 
responsible for presenting the user interface to search 
for and contribute songs, managing user information, 
and passing requests and audio files to the back-end. 
The iPhone client under development does not interact 
with the Flash Media Server, instead communicating 
with the server only through a PHP front end, as illus-
trated in Figure 3. 

The server-side back-end is built around a Java servlet, 
running in Apache Tomcat. The back-end implements 
the matching algorithm and computes similarity rank-
ings of submitted queries. Both the front and back ends 
interact directly with the SQL database on the server. 

Encoding Melodies 

Before a melodic comparison takes place, our tran-
scriber estimates the fundamental frequency of the sing-
ing every 20 milliseconds. The note segmenter then 
divides this series of estimates into notes [18]. We en-
code all queries and all melodies in the database as se-
quences (strings) of note intervals. Each note interval is 
represented by a pair of values: the pitch interval (PI) 
between adjacent notes (measured in units of musical 
half-steps) and the log of the ratio between the length of 
a note and the length of the following note (LIR). Note 
lengths are defined to be inter-onset-intervals. We use 
note intervals encoded in this way because they are 
transposition invariant (melodies that differ only in key 
appear the same) and tempo invariant (melodies that 
differ only in tempo appear the same)g.  We represent a 

melody X as a string of note intervals. The encoding of 
a sung example into note intervals is illustrated in 
Figure 4. 

 
Figure 4. Pitch tracking and encoding of a sung 
example. Dots are pitch estimates. Horizontal 
lines are segmented notes. One note interval is 
shown in the rounded square. 

Measuring Distance Between Melodies 

Equation 1 defines a simple metric between note inter-
vals x and y, with pitch intervals xp and yp and LIRs xl 
and yl. 

(1) 

Here, a and b are non-negative weights chosen to opti-
mize performance on a set of example queries for a 
given database of songs.  Of course, when searching in 
a melodic database, one is not comparing individual 
note intervals, but full melodies. To compare melodic 
strings, we use edit distance [19]. 

 The edit distance between two strings is the cost of the 
least expensive way of transforming one string into the 
other. Here, transformation cost (a.k.a. match cost) de-
pends on the comparison function for the individual 
string elements described in Equation 1. We have a 
fixed insertion/deletion cost of one, effectively forcing 
the other parameters to be in these units.  

This simple approach, when paired with a differential 
melodic encoding like our note-interval representation 
(this encoding is crucial to the use of such a simple note 
metric), has been shown to produce comparable search 
performance to more complex distance measures, with-
out the need to optimize many parameters [4].   

Each song in the database is represented by one or more 
sung melodies (search keys). A song’s ranking in the 
search results is determined by the distance between the 
query and the nearest search key for that song. 

Direct comparison of the query to every melody in the 
database becomes prohibitively slow as the size of the 
collection increases. If the comparison function for 
string elements is a metric (like Equation 1) then edit 
distance can also be made a metric [19]. Placing data-
base melodies in a metric space allows efficient search 
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of a melodic database using vantage point trees [20, 
21].  

Vetting the Database 

When a user queries for a particular song (e.g.“Lola”), 
we consider a search successful if the correct target 
song is returned as one of the top answers. The closer 
the target gets to number one, the better the system per-
formance. When a single search fails, it may be difficult 
to tell exactly why. The query may be poorly formed 
(singing “Hey Jude” when searching for “Lola”),   the 
search method may be ineffective for a particular user 
(perhaps a user model needs optimization), or the indi-
vidual search key may not correspond well with what a 
typical person would sing (storing only the verse when 
people sing only the chorus). Maintaining a database of 
past queries and their associated targets makes it possi-
ble to distinguish between cases and react appropriately. 

Each row in Table 1 corresponds to a query made to a 
search engine. Here, “Query Audio” is the recorded 
singing, “Target Title” is the title of the correct target in 
the database and “Target Rank” is the rank of the cor-
rect target in the results returned by the system. In this 
example, every query by User 1 failed to place in the 
top ten. This is an indication that the search engine is 
not optimized properly for this user. Note also that 
every query for “Hey Jude” failed to place within the 
top fifty, regardless of user. This indicates a mismatch 
between the target and the kinds of query example users 
provide. This is in direct contrast to both “Que Sera 
Sera” and “Lola,” each of which has one query whose 
correct target was ranked first.  

 

 

 

 

 

 

 

 

 

Table 1. Examples in a database 

Our searchable database is composed of sung examples, 
keyed to correct song titles. This lets us automatically 
vet our search keys by using them as example queries. 
Those targets with below-average search results can 
then be tagged for search key updating. Such a database 
also allows for principled, automatic improvement of 
our similarity measures, as described in the section Sys-
tem Optimization. 

System Optimization  

Recall that searchable keys in the database are gener-
ated from past queries, sung contributions and examples 
of singing from Karaoke Callout. Each sung example is 
a potential new search key. The effectiveness of this 
new key can be measured by rerunning saved queries 
against this new key. This can be repeated using a key 
based on each query (or even on the union of all que-
ries) and the best new key may then replace or augment 
the original search key for a particular song. This allows 
automatic, constant updating and improvement of the 
database without need for expert intervention.  

A primary measure our system optimizes is mean recip-
rocal right rank (MRRR), shown in Equation 2. The 
right rank of a query is the rank of the correct song for 
the query. We refer to the correct song as the target.  
The mean right rank for a trial is the average right rank 
for all queries in the set.  

 (2) 

We use MRRR because it gives more useful feedback 
than the simple mean right rank. Consider the following 
example. System A returns right ranks of 1, 1, 199, and 
199 for four queries. System B returns 103, 102, 98, and 
97. We prefer a system that ranks the correct target 1st 
half of the time to one that ranks it around 100th every 
time. Mean right rank returns a value of 100 for both 
systems. MRRR returns 0.5 for system A and 0.01 for 
system B.  

When vetting search keys, one need only measure recip-
rocal right rank for each search key in the database. 
When this falls below a given value, it becomes a can-
didate for removal or replacement, as described above.  

Similarly, we use MRRR as the measure of the effec-
tiveness of a melodic similarity measure. We currently 
use the simple edit-distance melody metric described in 
a previous section because it allows the application of 
vantage-point trees to speed search.  This metric, how-
ever, does have tunable parameters that let us weigh the 
relative importance of pitch and rhythm in melody 
matching.  Our system allows re-tuning of the weight of 
such parameters after deployment, as the composition 
of the database and the user queries shift over time [18]. 

The relative importance of rhythm and pitch are charac-
terized by the parameters a and b, respectively, in Equa-
tion 1. The rhythm weight is a, and b is referred to as 
the pitch weight. We cannot know a priori what values 
should be given to these parameters, so these values 
must be determined empirically. It also seems natural to 
wonder if different values would be appropriate for dif-
ferent individuals, depending on how accurate a given 
individual’s singing is with regard to rhythm or pitch. 

59 Hey Jude  3 

39 Que Sera Sera  1 

190 Hey Jude  1 

21 Lola  1 

233 Hey Jude  2 

1 Que Sera Sera  3 

1 Lola  2 

Target 
Rank  

Target Title Query 
Audio 

User 
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To explore these issues we first determined generally 
applicable values for these parameters by optimizing 
MRRR with respect to these parameters over a subset of 
the database. This process yielded an optimal value of 
0.5 for rhythm weight and 0.005 for pitch weight. 
(These values only have meaning relative to the corre-
sponding units used in Equation 1.) These values were 
set as the default parameter values of the system. 

Next we collected a large number of labeled queries for 
a set of four heavy users of the system (more than 512 
queries per user) and computed MRRR over a wide 
range of rhythm weight and pitch weight values. This 
served two purposes: to validate our choice of default 
parameter values, and to determine the importance of 
tuning these parameters per user. Note that this second 
set of queries, and the users who provided them, were 
not part of the initial optimization of the parameter val-
ues and so this constitutes a proper validation. Table 2 
contains an illustrative excerpt of the analysis. 

 
 

User 
Best 

Rhythm 
Weight 

Best 
Pitch 

Weight 

Best 
Individual 

MRRR 

% MRRR 
change from 
best global 

settings  

1 0.400 0.00450 0.4760 +2.1%* 
2 0.475 0.00450 0.4412 +0.9%* 
3 0.525 0.00425 0.4065 +2.4%* 
4 0.475 0.00500 0.3771 +2.4%* 

 
Table 2. Optimal pitch and rhythm weights. Here, * 
means not statistically significant. 
 
Each row of the table shows the result of optimizing 
MRRR with respect to rhythm weight and pitch weight 
for the given user. In each case the optimization was 
done over 512 labeled queries using a grid search with 
17 points in each dimension and a granularity of 0.025 
for rhythm weight and 0.00025 for pitch weight. This 
gave a total of 289 parameter value pairs tried for each 
user.  The % change in MRRR is measured with respect 
to the MRRR achieved using the default rhythm and 
pitch weights learned from an earlier set of singers and 
examples.  

The values shown for MRRR are based on an early 
2010 snapshot of our constantly-growing database of 
real-world, user-contributed sung examples. For this 
experiment, all contributions from the singer for whom 
we optimize the values were removed prior to testing, 
as were all anonymous contributions to the database. 
This was done to ensure no contributions by the singer 
in question were used as searchable targets. Therefore 
the size of the test database depends on the number of 
contributions by the singer in question. The MRRR 
reported for User 1 was based on the largest resulting 
data set (5302 contributions representing 1919 unique 
songs). The data set for User 3 was the smallest (4556 
contributions representing 1730 unique songs). 

Several observations are possible from this table. The 
parameter values that result from optimizing per user 
are fairly close to the defaults learned from a large set 
of earlier singers. The optimal rhythm weight is within 
one grid point in three of four cases and the optimal 
pitch weight is within two grid points in three of four 
cases. More importantly, the improvement in MRRR 
from optimizing these parameters is quite small. In fact, 
it is less than 3% of the MRRR for each singer when 
using the default global parameter values learned from 
another set of singers. This difference is not statistically 
significant when taking into account the variance of 
MRRR on a random sample of 512 queries.  

On the basis of this data and on similar analysis of other 
users, we are confident that our empirically determined 
global defaults for rhythm and pitch weights are valid 
and robust across a wide range of users, in the context 
of the current algorithm and the current composition of 
the database. Given the robustness of the default set-
tings it appears that personalization in this parameter 
space is not necessary. However, our system contains 
several other parameter spaces and algorithmic choices 
where the importance of personalization has not yet 
been explored.  

KARAOKE CALLOUT 
In order to bootstrap the creation of a paired singing-
example/target database and encourage user participa-
tion, we take a page from recent work in participatory 
and collaborative tagging. Particular inspirations in-
clude Open Mind [17] the ESP Game [16] and Karaoke 
Revolution (a popular video game released by Konami 
for the Sony PlayStation 2). 

These examples have inspired us to cast system training 
in the form of a prototype interactive, client-server kar-
aoke game: Karaoke Callout. This game closes the loop 
between system use and system improvement by pro-
viding correct song labels for sung examples, so that we 
can automatically vet and update a musical search en-
gine.  

An initial prototype of this game was originally devel-
oped for Symbian-OS phones [15]. Since creating the 
initial Symbian prototype, we have developed a new 
iPhone version of the game that is in beta testing with a 
small group of users. Those interested in becoming test-
ers or in receiving notification of the final release of the 
game are encouraged to contact the authors of this pa-
per.  

The Karaoke Callout Game Interaction 

The flow of Karaoke Callout proceeds as follows. 
Player 1 selects a song from our constantly growing 
database and sings it into the phone. While singing, the 
player is provided the lyrics to the song (Figure 5, step 
1). If the player has the selected song in their iPod mu-
sic library, then they have the option to sing along as 
the original recording plays. 
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Once the player is done singing, the audio is sent to the 
Tunebot music search engine, which rates the quality of 
the singing by measuring how closely it resembles the 
nearest melodic key for that song in the server database, 
sending a score back to the user (Figure 5, step 2) 

Player 1 may then challenge another person to beat their 
score. If that person is a registered Karaoke Callout 
user,  Player 1 needs to only provide the callout recipi-
ent’s username, and they will be notified of the chal-
lenge via a push notification on their phone  (Figure 5, 
step 3).  If Player 1 wishes to invite a new person to 
play, they can select any email address (their phone 
contact list is provided as a convenience) and a mail 
will be sent to that person explaining how to install and 
play Karaoke Callout.  

 
Figure 5. Screen shots of the iPhone interface for 
Karaoke Callout. 

To accept the challenge, the callout recipient (Player 2) 
sings the song, attempting to better the performance of 
the challenger. The players are then notified of the re-
sults (Figure 5, step 4). This process may then be re-
peated, with either party selecting a new song with 
which to “call out” the other party. Over the course of 
an interaction, numerous examples of each party’s sing-
ing are created and stored in our database.   

Karaoke Callout System Architecture 

The game server (see Figure 6) is divided into three 
main components. The first of these is the Karaoke 

Server (written in PHP), which handles communication 
with the clients, queries the Singing Scorer (our music 
search engine) and stores sung examples in the data-
base. The final component is a SQL database of user 
accounts, audio queries, scores, and challenges. In addi-
tion to our server, the Apple Push Notification Service 
is also in the loop in order to communicate with the 
users when the game is not running. The Singing Scorer 
is modular and separate from the Karaoke Server, al-
lowing each component to be updated independently. 
This is key for implementing automated system person-
alization and learning, as the Singing Scorer is the 
search engine that we wish to optimize (Tunebot). 
 

 
Figure 6. An overview of the KaraokeCallout system 
architecture. 

USAGE STATISTICS 
An ongoing goal of the Tunebot project has been to 
create a live, real-world system available to the general 
public, containing a growing set of songs that are of 
interest to a wide audience, and developed using data 
that represents the queries that real users generate.  The 
usage statistics that follow were collected courtesy of 
Google Analytics.  

In the period from January 15, 2010 to April 15, 2010, 
the Tunebot website had 15,421 unique visitors from 
118 countries and territories. While more than three-
quarters of these visits are from the United States and 
Canada, nearly 2,500 are from Europe and another 
1,000 are from the rest of the world. The site receives 
between 100 and 200 hits on a typical day, most of 
which are new visitors. Figure 7 shows a breakdown of 
visitors by country of origin for the top ten countries. 

Tunebot currently has more than 70 users who have 
chosen to register so that they may contribute songs to 
the system. It is clear the vast majority of users cur-
rently use the system anonymously to perform queries. 
We expect that broad dissemination of Karaoke Callout 
should increase the proportion of registered users. 
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Figure 7. Proportion of visitors to Tunebot, by country 
of origin. Data collected over the period January 15 to 
April 15, 2010 (out of a total 15,421 unique visitors). 

ANALYSIS AND CHALLENGES 
Because we are developing a real-world system, some 
of our efforts have been directed at dealing with the 
practical issues that arise in implementing such a sys-
tem, including robustness, scalability, efficiency, and 
system responsiveness. 

The median length of a user query is around 18 seconds 
of audio, and our system currently takes about 5 sec-
onds to return results from the time the query is re-
ceived. For comparison, the longest query received to 
date is around 48 seconds long, and our system cur-
rently takes about 13 seconds to return a response to 
that query. The turnaround time is a function of several 
factors, including the size of the database and the length 
of the query, both in terms of the overall duration of the 
audio and the number of notes the user has sung. In the 
current implementation of the matching algorithm the 
running time is O(kn), where k is the length of the query 
in notes and n is the number of keys in the database. 
While query lengths are not likely to change in the fu-
ture, the size of the database is expected to grow dra-
matically over time. Algorithmic optimizations such as 
vantage point trees (discussed earlier) are one way to 
deal with the increasing query turnaround time. Another 
possibility, which we have implemented in our devel-
opment environment but not yet in the production sys-
tem, is to distribute the search algorithm across proces-
sors and compute matches in parallel. The potential for 
parallelization to speed up QBH is illustrated in [22]. 

Profiling analysis of our system has shown that a major 
portion of the query processing time is currently spent 
converting the raw audio of the query to the internal key 
representation, even though this phase of the algorithm 
does not dominate asymptotically. Future work includes 
exploring algorithmic and code-level optimizations to 
improve the running time of this portion of the algo-
rithm. 

A separate but related area of work has been to improve 
the scalability of our system in response to growing and 
fluctuating demand. This requires that the Tunebot serv-

ice run on multiple machines concurrently, while main-
taining a synchronized view of the database (so that, for 
example, a newly contributed song will be visible im-
mediately to the user who contributed it). Cloud com-
puting is an appealing solution to provide online serv-
ices in a scalable and distributed fashion. We have de-
veloped a working prototype of Tunebot that is de-
ployed as a virtual machine image on the Amazon Web 
Services cloud infrastructure. 

MOVING FORWARD 
We expect this work will lead to new insight into the 
mappings between human perception, human music 
production and machine-measurable features of music, 
as well as leading to new approaches to automatically 
tagging large databases of multimedia content, new 
approaches to individualized search engines for im-
proved results and new approaches to speed multimedia 
search. 
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