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Long-term temporal structure in
SONYC recordings

Predominant cluster (N=8) over 4 months for 1 sensor
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Long-term temporal structure in
SONYC recordings
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Can we exploit this long-term seasonal structure
for self-supervised audio representation learning”
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Self-supervised pretext task

e | earn representations (embeddings) by solving pretext tasks

e Pretext tasks exploit known intrinsic structure or estimate / invert a controlled
perturbation

e Key is that pretext tasks do not require (human-generated) labels and are trained

on lots of this “unlabeled” data

Predicted Pretext Task Target
1 “Unlabeled” Pretext Task Target
Pretext Task Decoder (e.g. intrinsic structure /

9 inverted perturbation, etc.)

Encoder

Input
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Supervised downstream task

¢ \With learned representation as input, use simpler, smaller capacity supervised
model with fewer labeled examples in a downstream task

Predicted Labels

1

Supervised Model Human-Generated
Labels

Fixed Encoder

Input




—xamples in computer vision

Unsupervised Visual Representation Learning by Context Prediction
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Unsupervised Learning of Visual
Representations by Solving Jigsaw Puzzles

UNSUPERVISED REPRESENTATION LEARNING BY PRE-
DICTING IMAGE ROTATIONS
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Learning and Using the Arrow of Time
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—xamples in machine listening

e Arandjelovic & Zisserman, “Look, listen and learn” (L3), ICCV 2017

e Exploits audio-visual correspondence

Correspond? (yes / no)

L

Correspondence Model

Audio Encoder ] Image Encoder

1 s Mel-spectrogram Input Single image video frame
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—xamples in machine listening

e Jansen, et al. “Unsupervised learning of semantic audio representations”,

ICASSP 2018

e Exploits short-term temporal
structure or perturbations

Triplet Loss:
max(D(A, P) — D(A,N) + «a,0)

Qno?“ébcol

Audio Encoder
(shared weights)

Anchor Input
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Audio Encoder
(shared weights)
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Audio Encoder
(shared weights)

Negative Input
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Temporal Cycle Decoder

¢ \\e propose to
exploit long-term
temporal structure Audio Encoder

Sensor |D

1 s Mel-Spectrogram Input 19



Temporal Cycle Decoder
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Audio Max pool: (32,24)

Encoder

e Audio encoder same as
“Look, Listen, and Learn” (L3):
- Simple CNN
- 4 convolutional blocks
- Each with 2 conv. layers
+ max pooling

® |nput:
48kHz
256-bin Mel spectrogram
log-scaled magnitude
5 ms hop

Conv: 512 (3,3) + BN + ReLU

Conv: 512 (3,3) + BN + ReLU

= 3x

Max pool: (2,2)

Conv: 64 (3,3) +BN + ReLU

Conv: 64 (3,3) + BN + ReLU

Batch Normalization

1 s Mel-Spectrogram Input

Size: (256, 199, 1)

Sensor ID
Size: (n_sensors,)

e [0 avoid issues with
phrase wrapping, phase
encoded as [cos(¢), sin(¢)]
optimized with MSE loss

e | ocation input incorporated after
audio encoder to account for location
dependence of sound events in
phase prediction
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TriCycle Training

e Because of resource constraints, limited SONYC dataset to 2017 data from 25
sensors ~25M 10 sec recordings (69k hours)

e Randomly sampled

e 1500 “epochs” (24M training examples)

21



Supervised downstream task:
Urlban sound tagging

Output: 8 multi-label

SONYC Urban Sound Tagging (UST) Dataset! T

.2
labeled subset of SONYC data AutoPool Temporal Pooling

t

v0.1 Released in March
Time-distributed Dense: 8 + Sigmoid

2019 DCASE Urban Sound Tagging Challenge dataset 1

10 sec recordings from SONYC sensors
2351 training
443 validation
274 test (did not use) Fixed Audio Encoder

Weak multi-label annotation on 23 fine-level classes
from 8 coarse-level groups (we used the coarse labels):
engine, machinery impact, non-machinery impact,
powered saw, alert signal, music, human voice, dog

3 Zooniverse volunteer annotators per recording
Used minority vote to aggregate

1 s Mel-Spectrogram Input

Validation and test set annotated by SONYC team -

1. Cartwright, et al. “SONYC Urban Sound Tagging (SONYC-UST): A multilabel dataset from an urban acoustic sensor network”, DCASE 2019
2. McFee, Salamon, Bello. “Adaptive pooling operators for weakly labeled sound event detection”, TASLP 2018



Urban sound tagging results with TriCycle

Initialization " ovele
training
L3 NO
Random NO
Random Yes

0.5 0.575 0.65 0.725 0.8
B Micro-F1@0.5 B Micro-AUPRC
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Strategies to focus on foreground events:
High-activity sampling

e Focus on high activity regions but still evenly sample each hour

e Compute SPL “activity” metric for each 10 s recording (SPL b/c precomputed):

79

\ > (dmn = dmpn—1)?

n=0

for SPL sequence d of length 80 (i.e., 10 s with 0.125 s step size) from sensor m
e Only sample from top 15 percent of each hour

¢ \Vithin each 10 s recording, sample 1 s clip, weighting by SPL
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Urban sound tagging results with TriCycle

Initialization TriCycle  High-activity

training sampling
L3 No
Random No
Random Yes
Random Yes Yes

0.5 0.575 0.65 0.725 0.8
B Micro-F1@0.5 B Micro-AUPRC
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-Ocusing on foreground events:
Per-Channel Energy Normalization (

Pre-process with Per-Channel Energy Normalization (PCEN)?

PG

=N

e Spectrogram processing that Gaussianizes and decorrelates frequency channels while retaining
sound events of interest (parameter hand tuned based on recommendations in [2])

E(t, f)

PCEN(t, f) =

(e +(E % ) (t, f)

Temporal integration

Dynamic range compression

Automatic gain control

1. Wang, et al. “Trainable frontend for robust and far-field keyword spotting”, ICASSP 2017

2. Lostanlen, Salamon, Cartwright, McFee, Farnsworth, Kelling, Bello, “Per-Channel Energy Normalization: Why and How”, SPL 2019 26



Strategies to focus on foreground events:
Per-Channel Energy Normalization (PCEN)

Pre-process with Per-Channel Energy Normalization (PCEN)?

e Spectrogram processing that Gaussianizes and decorrelates frequency channels while retaining
sound events of interest (parameter hand tuned based on recommendations in [2])

Log-scaling PCEN

8192
4096

2048

VS

Frequency (Hz)

1024

512

Time (s) Time (s)

1. Wang, et al. “Trainable frontend for robust and far-field keyword spotting”, ICASSP 2017
2. Lostanlen, Salamon, Cartwright, McFee, Farnsworth, Kelling, Bello, “Per-Channel Energy Normalization: Why and How”, SPL 2019
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Urban sound tagging results with TriCycle

TriCycle High-activity

Initialization training sampling PCEN
L3 No
Random No
Random Yes
Random Yes Yes
Random Yes Yes Yes

0.5 0.575 0.65 0.725 0.8

B Micro-F1@0.5 B Micro-AUPRC
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Future work

® |nvestigate circular regression loss formulations for von Mises distributed data

e Allow for groups of recordings with similar phase to be trained simultaneously
and fused to increase the temporal signal and reduce impact of the background
(hopefully reduce need for PCEN)

e Analyze the benefits of each temporal cycle and what information is encoded,
and what is not

e Test TriCycle approach on other modalities
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Summary

e Proposed an approach to self-supervised audio representation learning by
predicting the time of recording

¢ [irst self-supervised embedding model trained on long-term temporal structure
(regardless of modality)

e Able to train dataset-specific embeddings with single-modal data

¢ Validated approach on an urban sound tagging task, matching performance of a
general state-of-the-art audio embedding

e Approach may be more general than audio, and well-suited for datasets from other
sensor networks also having dense, longitudinal, timestamped data
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Sensor prediction results with TriCycle

TriCycle High-activity

Initialization training sampling PCEN
L3 No
Random No
Random Yes
Random Yes Yes
Random Yes Yes Yes
0.5 0.6 0.7 0.8 0.9

B USTF1@0.5 M UST AUPRC [ Sensor ID Acc
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Results

(a) (b) (c) (d)

TriCycle MAD MAD MAD UST UST UST UST Sensor

Name Init. Train Variation Day Week Year | F1@0.5 P@0.5 R@0.5 AUPRC Acc.

3 L°-Net No — — — — 0.638 0.767 0.547 0.751 0.792

rand Rand. No — — — — 0.531 0.697 0.429 0.632 0.721
rand-tc Rand. Yes — 0.480 0.508 0.562 0.622 0.734 0.540 0.712 0.781
[3-tc-llr L>-Net Yes Low LR 0.370 0.531 0.540 0.638 0.764 0.548 0.739 0.824
[3-tc-hlr L>-Net Yes High LR 0.338 0.443 0.545 0.638 0.749 0.556 0.737 0.851
rand-tc-rs Rand. Yes Rand. Sampling | 0.416 0.508 0.542 0.610 0.739 0.520 0.702 0.801
rand-tc-pcen | Rand. Yes PCEN 0.351 0.423 0.444 0.650 0.767 0.564 0.744 0.831
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