TriCycle: Audio Representation Learning from Sensor Network Data Using Self-Supervision

Mark Cartwright¹, Jason Cramer¹, Justin Salamon², Juan Pablo Bello¹

1. New York University Music and Audio Research Lab 2. Adobe Research

57

Fixed-location Sensors

130M

40

10 sec Recordings

Sensor Years of Audio

Long-term temporal structure in SONYC recordings

Predominant cluster (N=8) over 4 months for 1 sensor

Long-term temporal structure in SONYC recordings

Can we exploit this long-term seasonal structure for self-supervised audio representation learning?

Self-supervised pretext task

- Learn representations (embeddings) by solving pretext tasks
- Pretext tasks exploit known intrinsic structure or estimate / invert a controlled perturbation
- Key is that pretext tasks **do not** require (human-generated) labels and are trained on **lots** of this "unlabeled" data

Supervised downstream task

• With learned representation as input, use **simpler**, **smaller** capacity supervised model with **fewer labeled examples** in a downstream task

Examples in computer vision

Examples in machine listening

• Arandjelovic & Zisserman, "Look, listen and learn" (L3), ICCV 2017

Examples in machine listening

 Jansen, et al. "Unsupervised learning of semantic audio representations", ICASSP 2018

TriCycle Model

• We propose to exploit long-term temporal structure

18

1 s Mel-Spectrogram Input

TriCycle Model

- Audio encoder same as "Look, Listen, and Learn" (L3):
 - Simple CNN
 - 4 convolutional blocks
 - Each with 2 conv. layers+ max pooling

 Input: 48kHz
 256-bin Mel spectrogram
 log-scaled magnitude
 5 ms hop

• To avoid issues with phrase wrapping, phase encoded as $[\cos(\phi), \sin(\phi)]$ optimized with MSE loss

 Location input incorporated after audio encoder to account for location dependence of sound events in phase prediction

TriCycle Training

- Because of resource constraints, limited SONYC dataset to 2017 data from 25 sensors ~25M 10 sec recordings (69k hours)
- Randomly sampled
- 1500 "epochs" (24M training examples)

Supervised downstream task: Urban sound tagging

SONYC Urban Sound Tagging (UST) Dataset¹

- labeled subset of SONYC data
- v0.1 Released in March
- 2019 DCASE Urban Sound Tagging Challenge dataset
- 10 sec recordings from SONYC sensors
 2351 training
 443 validation
 274 test (*did not use*)
- Weak multi-label annotation on 23 fine-level classes from 8 coarse-level groups (we used the coarse labels): engine, machinery impact, non-machinery impact, powered saw, alert signal, music, human voice, dog
- 3 Zooniverse volunteer annotators per recording Used minority vote to aggregate
- Validation and test set annotated by SONYC team

1 s Mel-Spectrogram Input

^{1.} Cartwright, et al. "SONYC Urban Sound Tagging (SONYC-UST): A multilabel dataset from an urban acoustic sensor network", DCASE 2019 2. McFee, Salamon, Bello. "Adaptive pooling operators for weakly labeled sound event detection", TASLP 2018

Urban sound tagging results with TriCycle

Strategies to focus on foreground events: High-activity sampling

- Focus on high activity regions but still evenly sample each hour
- Compute SPL "activity" metric for each 10 s recording (SPL b/c precomputed):

$$\sqrt{\sum_{n=0}^{79} (d_{m,n} - d_{m,n-1})^2}$$

for SPL sequence d of length 80 (i.e., 10 s with 0.125 s step size) from sensor m

- Only sample from top 15 percent of each hour
- Within each 10 s recording, sample 1 s clip, weighting by SPL

Urban sound tagging results with TriCycle

Focusing on foreground events: Per-Channel Energy Normalization (PCEN)

Pre-process with Per-Channel Energy Normalization (PCEN)¹

• Spectrogram processing that Gaussianizes and decorrelates frequency channels while retaining sound events of interest (parameter hand tuned based on recommendations in [2])

1. Wang, et al. "Trainable frontend for robust and far-field keyword spotting", ICASSP 2017

2. Lostanlen, Salamon, Cartwright, McFee, Farnsworth, Kelling, Bello, "Per-Channel Energy Normalization: Why and How", SPL 2019

Strategies to focus on foreground events: Per-Channel Energy Normalization (PCEN)

Pre-process with Per-Channel Energy Normalization (PCEN)¹

Spectrogram processing that Gaussianizes and decorrelates frequency channels while retaining \bullet sound events of interest (parameter hand tuned based on recommendations in [2])

1. Wang, et al. "Trainable frontend for robust and far-field keyword spotting", ICASSP 2017

2. Lostanlen, Salamon, Cartwright, McFee, Farnsworth, Kelling, Bello, "Per-Channel Energy Normalization: Why and How", SPL 2019

Urban sound tagging results with TriCycle

Future work

- Investigate circular regression loss formulations for von Mises distributed data
- Allow for groups of recordings with similar phase to be trained simultaneously and fused to increase the temporal signal and reduce impact of the background (hopefully reduce need for PCEN)
- Analyze the benefits of each temporal cycle and what information is encoded, and what is not
- Test TriCycle approach on other modalities

Summary

- Proposed an approach to self-supervised audio representation learning by predicting the time of recording
- First self-supervised embedding model trained on long-term temporal structure (regardless of modality)
- Able to train dataset-specific embeddings with single-modal data
- Validated approach on an urban sound tagging task, matching performance of a general state-of-the-art audio embedding
- Approach may be more general than audio, and well-suited for datasets from other sensor networks also having dense, longitudinal, timestamped data

Sensor prediction results with TriCycle

Results

	(a)			(b)			(c)				(d)
		TriCycle		MAD	MAD	MAD	UST	UST	UST	UST	Sensor
Name	Init.	Train	Variation	Day	Week	Year	F1@0.5	P@0.5	R@0.5	AUPRC	Acc.
13	L ³ -Net	No					0.638	0.767	0.547	0.751	0.792
rand	Rand.	No	—				0.531	0.697	0.429	0.632	0.721
rand-tc	Rand.	Yes		0.480	0.508	0.562	0.622	0.734	0.540	0.712	0.781
l3-tc-llr	L ³ -Net	Yes	Low LR	0.370	0.531	0.540	0.638	0.764	0.548	0.739	0.824
l3-tc-hlr	L ³ -Net	Yes	High LR	0.338	0.443	0.545	0.638	0.749	0.556	0.737	0.851
rand-tc-rs	Rand.	Yes	Rand. Sampling	0.416	0.508	0.542	0.610	0.739	0.520	0.702	0.801
rand-tc-pcen	Rand.	Yes	PCEN	0.351	0.423	0.444	0.650	0.767	0.564	0.744	0.831