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57
Fixed-location Sensors

130M
10 sec Recordings

40
Sensor Years of Audio



Long-term temporal structure in  
SONYC recordings 
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Predominant cluster (N=8) over 4 months for 1 sensor

12 AM 12 AM12 PM 6 PM6 AM 9 AM3 AM 3 PM 9 PM
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Long-term temporal structure in  
SONYC recordings 
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“People Talking”

“Birds Chirping”

“Loud Truck Engine”

“Siren”

“Dog Barking”

“Powered Saw”

Cluster frequency 
grouped by hour of the day 

on SONYC recordings

Hour
12 AM 12 AM12 PM 6 PM6 AM



Can we exploit this long-term seasonal structure 
for self-supervised audio representation learning?
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Self-supervised pretext task
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• Learn representations (embeddings) by solving pretext tasks 

• Pretext tasks exploit known intrinsic structure or estimate / invert a controlled 
perturbation 

• Key is that pretext tasks do not require (human-generated) labels and are trained 
on lots of this “unlabeled” data

Pretext Task Decoder

Encoder

Audio Encoder

Input

Predicted Pretext Task Target 

“Unlabeled” Pretext Task Target 
(e.g. intrinsic structure / 

inverted perturbation, etc.)



Supervised downstream task
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• With learned representation as input, use simpler, smaller capacity supervised 
model with fewer labeled examples in a downstream task

Supervised Model

Fixed Encoder

Audio Encoder

Input

Predicted Labels

Human-Generated
Labels



Examples in computer vision
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Unsupervised Visual Representation Learning by Context Prediction

Carl Doersch1,2 Abhinav Gupta1 Alexei A. Efros2
1 School of Computer Science 2 Dept. of Electrical Engineering and Computer Science

Carnegie Mellon University University of California, Berkeley

Abstract

This work explores the use of spatial context as a source

of free and plentiful supervisory signal for training a rich

visual representation. Given only a large, unlabeled image

collection, we extract random pairs of patches from each

image and train a convolutional neural net to predict the po-

sition of the second patch relative to the first. We argue that

doing well on this task requires the model to learn to recog-

nize objects and their parts. We demonstrate that the fea-

ture representation learned using this within-image context

indeed captures visual similarity across images. For exam-

ple, this representation allows us to perform unsupervised

visual discovery of objects like cats, people, and even birds

from the Pascal VOC 2011 detection dataset. Furthermore,

we show that the learned ConvNet can be used in the R-

CNN framework [19] and provides a significant boost over

a randomly-initialized ConvNet, resulting in state-of-the-

art performance among algorithms which use only Pascal-

provided training set annotations.

1. Introduction

Recently, new computer vision methods have leveraged
large datasets of millions of labeled examples to learn rich,
high-performance visual representations [29]. Yet efforts
to scale these methods to truly Internet-scale datasets (i.e.
hundreds of billions of images) are hampered by the sheer
expense of the human annotation required. A natural way
to address this difficulty would be to employ unsupervised
learning, which aims to use data without any annotation.
Unfortunately, despite several decades of sustained effort,
unsupervised methods have not yet been shown to extract
useful information from large collections of full-sized, real
images. After all, without labels, it is not even clear what

should be represented. How can one write an objective
function to encourage a representation to capture, for ex-
ample, objects, if none of the objects are labeled?

Interestingly, in the text domain, context has proven to
be a powerful source of automatic supervisory signal for
learning representations [3, 38, 9, 37]. Given a large text
corpus, the idea is to train a model that maps each word
to a feature vector, such that it is easy to predict the words

_ _ ? ? 

Example: 

Question 1: Question 2: 

Figure 1. Our task for learning patch representations involves ran-

domly sampling a patch (blue) and then one of eight possible

neighbors (red). Can you guess the spatial configuration for the

two pairs of patches? Note that the task is much easier once you

have recognized the object!

Answerkey:Q1:BottomrightQ2:Topcenter

in the context (i.e., a few words before and/or after) given
the vector. This converts an apparently unsupervised prob-
lem (finding a good similarity metric between words) into
a “self-supervised” one: learning a function from a given
word to the words surrounding it. Here the context predic-
tion task is just a “pretext” to force the model to learn a
good word embedding, which, in turn, has been shown to
be useful in a number of real tasks, such as semantic word
similarity [37].

Our paper aims to provide a similar “self-supervised”
formulation for image data: a supervised task involving pre-
dicting the context for a patch. Our task is illustrated in Fig-
ures 1 and 2. We sample random pairs of patches in one of
eight spatial configurations, and present each pair to a ma-
chine learner, providing no information about the patches’
original position within the image. The algorithm must then
guess the position of one patch relative to the other. Our
underlying hypothesis is that doing well on this task re-
quires understanding scenes and objects, i.e. a good visual
representation for this task will need to extract objects and
their parts in order to reason about their relative spatial lo-
cation. “Objects,” after all, consist of multiple parts that
can be detected independently of one another, and which
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word to the words surrounding it. Here the context predic-
tion task is just a “pretext” to force the model to learn a
good word embedding, which, in turn, has been shown to
be useful in a number of real tasks, such as semantic word
similarity [37].

Our paper aims to provide a similar “self-supervised”
formulation for image data: a supervised task involving pre-
dicting the context for a patch. Our task is illustrated in Fig-
ures 1 and 2. We sample random pairs of patches in one of
eight spatial configurations, and present each pair to a ma-
chine learner, providing no information about the patches’
original position within the image. The algorithm must then
guess the position of one patch relative to the other. Our
underlying hypothesis is that doing well on this task re-
quires understanding scenes and objects, i.e. a good visual
representation for this task will need to extract objects and
their parts in order to reason about their relative spatial lo-
cation. “Objects,” after all, consist of multiple parts that
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Unsupervised Learning of Visual
Representations by Solving Jigsaw Puzzles

Mehdi Noroozi and Paolo Favaro

Institute for Informatiks
University of Bern

{noroozi,paolo.favaro}@inf.unibe.ch

Abstract. In this paper we study the problem of image representation
learning without human annotation. By following the principles of self-
supervision, we build a convolutional neural network (CNN) that can
be trained to solve Jigsaw puzzles as a pretext task, which requires no
manual labeling, and then later repurposed to solve object classification
and detection. To maintain the compatibility across tasks we introduce
the context-free network (CFN), a siamese-ennead CNN. The CFN takes
image tiles as input and explicitly limits the receptive field (or context)
of its early processing units to one tile at a time. We show that the CFN
includes fewer parameters than AlexNet while preserving the same se-
mantic learning capabilities. By training the CFN to solve Jigsaw puzzles,
we learn both a feature mapping of object parts as well as their correct
spatial arrangement. Our experimental evaluations show that the learned
features capture semantically relevant content. Our proposed method for
learning visual representations outperforms state of the art methods in
several transfer learning benchmarks.

1 Introduction

Visual tasks, such as object classification and detection, have been successfully
approached through the supervised learning paradigm [1,11,25,36], where one
uses labeled data to train a parametric model. However, as manually labeled
data can be costly, unsupervised learning methods are gaining momentum.

Recently, Doersch et al. [10], Wang and Gupta [39] and Agrawal et al. [2]
have explored a novel paradigm for unsupervised learning called self-supervised
learning. The main idea is to exploit di↵erent labelings that are freely available
besides or within visual data, and to use them as intrinsic reward signals to learn
general-purpose features. [10] uses the relative spatial co-location of patches in
images as a label. [39] uses object correspondence obtained through tracking in
videos, and [2] uses ego-motion information obtained by a mobile agent such as
the Google car [7]. The features obtained with these approaches have been suc-
cessfully transferred to classification and detections tasks, and their performance
is very encouraging when compared to features trained in a supervised manner.

A fundamental di↵erence between [10] and [39,2] is that the former method
uses single images as the training set and the other two methods exploit mul-
tiple images related either through a temporal or a viewpoint transformation.
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(a) (b) (c)

Fig. 1: Learning image representations by solving Jigsaw puzzles. (a) The image
from which the tiles (marked with green lines) are extracted. (b) A puzzle ob-
tained by shu✏ing the tiles. Some tiles might be directly identifiable as object
parts, but others are ambiguous (e.g., have similar patterns) and their identi-
fication is much more reliable when all tiles are jointly evaluated. In contrast,
with reference to (c), determining the relative position between the central tile
and the top two tiles from the left can be very challenging [10].

While it is true that biological agents typically make use of multiple images and
also integrate additional sensory information, such as ego-motion, it is also true
that single snapshots may carry more information than we have been able to ex-
tract so far. This work shows that this is indeed the case. We introduce a novel
self-supervised task, the Jigsaw puzzle reassembly problem (see Fig. 1), which
builds features that yield high performance when transferred to detection and
classification tasks.

We argue that solving Jigsaw puzzles can be used to teach a system that
an object is made of parts and what these parts are. The association of each
separate puzzle tile to a precise object part might be ambiguous. However, when
all the tiles are observed, the ambiguities might be eliminated more easily be-
cause the tile placement is mutually exclusive. This argument is supported by
our experimental validation. Training a Jigsaw puzzle solver takes about 2.5
days compared to 4 weeks of [10]. Also, there is no need to handle chromatic
aberration or to build robustness to pixelation. Moreover, the features are highly
transferrable to detection and classification and yield the highest performance
to date for an unsupervised method.

2 Related work

This work falls in the area of representation/feature learning, which is an unsu-
pervised learning problem [3]. Representation learning is concerned with building
intermediate representations of data useful to solve machine learning tasks. It
also involves transfer learning [41], as one applies and repurposes features that
have been learned by solving the Jigsaw puzzle to other tasks such as object
classification and detection. In our experiments we do so via the pre-training +

Published as a conference paper at ICLR 2018

UNSUPERVISED REPRESENTATION LEARNING BY PRE-
DICTING IMAGE ROTATIONS

Spyros Gidaris, Praveer Singh, Nikos Komodakis

University Paris-Est, LIGM
Ecole des Ponts ParisTech
{spyros.gidaris,praveer.singh,nikos.komodakis}@enpc.fr

ABSTRACT

Over the last years, deep convolutional neural networks (ConvNets) have trans-
formed the field of computer vision thanks to their unparalleled capacity to learn
high level semantic image features. However, in order to successfully learn those
features, they usually require massive amounts of manually labeled data, which
is both expensive and impractical to scale. Therefore, unsupervised semantic fea-
ture learning, i.e., learning without requiring manual annotation effort, is of crucial
importance in order to successfully harvest the vast amount of visual data that are
available today. In our work we propose to learn image features by training Con-
vNets to recognize the 2d rotation that is applied to the image that it gets as input.
We demonstrate both qualitatively and quantitatively that this apparently simple
task actually provides a very powerful supervisory signal for semantic feature
learning. We exhaustively evaluate our method in various unsupervised feature
learning benchmarks and we exhibit in all of them state-of-the-art performance.
Specifically, our results on those benchmarks demonstrate dramatic improvements
w.r.t. prior state-of-the-art approaches in unsupervised representation learning and
thus significantly close the gap with supervised feature learning. For instance, in
PASCAL VOC 2007 detection task our unsupervised pre-trained AlexNet model
achieves the state-of-the-art (among unsupervised methods) mAP of 54.4% that is
only 2.4 points lower from the supervised case. We get similarly striking results
when we transfer our unsupervised learned features on various other tasks, such
as ImageNet classification, PASCAL classification, PASCAL segmentation, and
CIFAR-10 classification. The code and models of our paper will be published on:
https://github.com/gidariss/FeatureLearningRotNet.

1 INTRODUCTION

In recent years, the widespread adoption of deep convolutional neural networks (LeCun et al., 1998)
(ConvNets) in computer vision, has lead to a tremendous progress in the field. Specifically, by train-
ing ConvNets on the object recognition (Russakovsky et al., 2015) or the scene classification (Zhou
et al., 2014) tasks with a massive amount of manually labeled data, they manage to learn power-
ful visual representations suitable for image understanding tasks. For instance, the image features
learned by ConvNets in this supervised manner have achieved excellent results when they are trans-
ferred to other vision tasks, such as object detection (Girshick, 2015), semantic segmentation (Long
et al., 2015), or image captioning (Karpathy & Fei-Fei, 2015). However, supervised feature learning
has the main limitation of requiring intensive manual labeling effort, which is both expensive and
infeasible to scale on the vast amount of visual data that are available today.

Due to that, there is lately an increased interest to learn high level ConvNet based representations
in an unsupervised manner that avoids manual annotation of visual data. Among them, a promi-
nent paradigm is the so-called self-supervised learning that defines an annotation free pretext task,
using only the visual information present on the images or videos, in order to provide a surrogate
supervision signal for feature learning. For example, in order to learn features, Zhang et al. (2016a)
and Larsson et al. (2016) train ConvNets to colorize gray scale images, Doersch et al. (2015) and
Noroozi & Favaro (2016) predict the relative position of image patches, and Agrawal et al. (2015)
predict the egomotion (i.e., self-motion) of a moving vehicle between two consecutive frames. The
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Rotated image: X
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ConvNet 
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ConvNet 
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Image X

Predict 270 degrees rotation (y=3)Rotate 270 degrees

g (X , y=3)

Rotate 180 degrees

g (X , y=2)

Rotate 90 degrees

g (X , y=1)

Rotate 0 degrees

g (X , y=0)

Maximize prob.

F
3(X 3)

Predict 0 degrees rotation (y=0)

Maximize prob.

F
2(X 2)

Maximize prob.

F
1(X 1)

Maximize prob.

F
0(X 0)

Predict 180 degrees rotation (y=2)

Predict 90 degrees rotation (y=1)

Objectives:

Figure 2: Illustration of the self-supervised task that we propose for semantic feature learning.
Given four possible geometric transformations, the 0, 90, 180, and 270 degrees rotations, we train
a ConvNet model F (.) to recognize the rotation that is applied to the image that it gets as input.
F y(Xy⇤

) is the probability of rotation transformation y predicted by model F (.) when it gets as
input an image that has been transformed by the rotation transformation y⇤.

to successfully predict the rotation of an image the ConvNet model must necessarily learn to localize
salient objects in the image, recognize their orientation and object type, and then relate the object
orientation with the dominant orientation that each type of object tends to be depicted within the
available images. In Figure 3b we visualize some attention maps generated by a model trained
on the rotation recognition task. These attention maps are computed based on the magnitude of
activations at each spatial cell of a convolutional layer and essentially reflect where the network
puts most of its focus in order to classify an input image. We observe, indeed, that in order for the
model to accomplish the rotation prediction task it learns to focus on high level object parts in the
image, such as eyes, nose, tails, and heads. By comparing them with the attention maps generated
by a model trained on the object recognition task in a supervised way (see Figure 3a) we observe
that both models seem to focus on roughly the same image regions. Furthermore, in Figure 4 we
visualize the first layer filters that were learnt by an AlexNet model trained on the proposed rotation
recognition task. As can be seen, they appear to have a big variety of edge filters on multiple
orientations and multiple frequencies. Remarkably, these filters seem to have a greater amount of
variety even than the filters learnt by the supervised object recognition task.

Absence of low-level visual artifacts: An additional important advantage of using image rotations
by multiples of 90 degrees over other geometric transformations, is that they can be implemented by
flip and transpose operations (as we will see below) that do not leave any easily detectable low-level
visual artifacts that will lead the ConvNet to learn trivial features with no practical value for the
vision perception tasks. In contrast, had we decided to use as geometric transformations, e.g., scale
and aspect ratio image transformations, in order to implement them we would need to use image
resizing routines that leave easily detectable image artifacts.

Well-posedness: Furthermore, human captured images tend to depict objects in an “up-standing”
position, thus making the rotation recognition task well defined, i.e., given an image rotated by 0,
90, 180, or 270 degrees, there is usually no ambiguity of what is the rotation transformation (with
the exception of images that only depict round objects). In contrast, that is not the case for the object
scale that varies significantly on human captured images.

Implementing image rotations: In order to implement the image rotations by 90, 180, and 270
degrees (the 0 degrees case is the image itself), we use flip and transpose operations. Specifically,
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Learning and Using the Arrow of Time
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3University of Oxford 4Massachusetts Institute of Technology 5Google Research
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(c) (d) 

(a) (b) 

Figure 1: Seeing these ordered frames from videos, can you tell whether each video is playing forward or backward? (answer
below1). Depending on the video, solving the task may require (a) low-level understanding (e.g. physics), (b) high-level
reasoning (e.g. semantics), or (c) familiarity with very subtle effects or with (d) camera conventions. In this work, we learn
and exploit several types of knowledge to predict the arrow of time automatically with neural network models trained on
large-scale video datasets.

Abstract

We seek to understand the arrow of time in videos – what

makes videos look like they are playing forwards or back-

wards? Can we visualize the cues? Can the arrow of time

be a supervisory signal useful for activity analysis? To this

end, we build three large-scale video datasets and apply a

learning-based approach to these tasks.

To learn the arrow of time efficiently and reliably, we de-

sign a ConvNet suitable for extended temporal footprints

and for class activation visualization, and study the ef-

fect of artificial cues, such as cinematographic conven-

tions, on learning. Our trained model achieves state-of-the-

art performance on large-scale real-world video datasets.

Through cluster analysis and localization of important re-

gions for the prediction, we examine learned visual cues

that are consistent among many samples and show when

and where they occur. Lastly, we use the trained ConvNet

for two applications: self-supervision for action recogni-

tion, and video forensics – determining whether Hollywood

film clips have been deliberately reversed in time, often used

as special effects.

1. Introduction

We seek to learn to see the arrow of time – to tell whether
a video sequence is playing forwards or backwards. At a
small scale, the world is reversible–the fundamental physics
equations are symmetric in time. Yet at a macroscopic scale,
time is often irreversible and we can identify certain motion
patterns (e.g., water flows downward) to tell the direction
of time. But this task can be challenging: some motion
patterns seem too subtle for human to determine if they are
playing forwards or backwards, as illustrated in Figure 1.
For example, it is possible for the train to move in either
direction with acceleration or deceleration (Figure 1d).

Furthermore, we are interested in how the arrow of time
manifests itself visually. We ask: first, can we train a reli-
able arrow of time classifier from large-scale natural videos
while avoiding artificial cues (i.e. cues introduced during
video production, not from the visual world); second, what
does the model learn about the visual world in order to solve
this task; and, last, can we apply such learned commonsense
knowledge to other video analysis tasks?

1Forwards: (b), (c); backwards: (a), (d). Though in (d) the train can
move in either direction.
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Examples in machine listening
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• Arandjelovic & Zisserman, “Look, listen and learn” (L3), ICCV 2017 

• Exploits audio-visual correspondence

Correspondence Model

Audio Encoder

Audio Encoder

Correspond? (yes / no)

1 s Mel-spectrogram Input Single image video frame

Audio Encoder

Image Encoder



Examples in machine listening
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• Jansen, et al. “Unsupervised learning of semantic audio representations”,  
ICASSP 2018 

• Exploits short-term temporal  
structure or perturbations

Triplet Loss:
max( D(A,P) - D(A,N) + a, 0)

Audio Encoder
(shared weights)

Audio Encoder

Anchor Input Positive Input

Audio Encoder

Audio Encoder
(shared weights)

Audio Encoder
(shared weights)

Negative Input

Audio Encoder

max(D(A,P )�D(A,N) + ↵, 0)
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TriCycle  
Model

Temporal Cycle Decoder

1 s Mel-Spectrogram Input
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Audio Encoder

Audio Encoder

Sensor ID

• We propose to 
exploit long-term 
temporal structure



�20

TriCycle  
Model

Batch Normalization

Conv: 64 (3,3) + BN + ReLU

Conv: 64 (3,3) + BN + ReLU

Max pool: (2,2)

Conv: 512 (3,3) + BN + ReLU

Conv: 512 (3,3) + BN + ReLU

Max pool: (32,24)Audio
Encoder

1 s Mel-Spectrogram Input
Size: (256, 199, 1)

Dense: 64Dense: 64

Add

Dense: 2 + Tanh

Dense: 64Dense: 64

Add

Dense: 2 + Tanh

Dense: 64Dense: 64

Add

Dense: 2 + Tanh
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Sensor ID
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Temporal Cycle Decoder
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• To avoid issues with 

phrase wrapping, phase 
encoded as 
optimized with MSE loss

• Location input incorporated after 
audio encoder to account for location 
dependence of sound events in 
phase prediction

• Audio encoder same as  
“Look, Listen, and Learn” (L3): 
- Simple CNN  
- 4 convolutional blocks 
- Each with 2 conv. layers 
   + max pooling

[cos(�), sin(�)]

• Input: 
48kHz  
256-bin Mel spectrogram 
log-scaled magnitude 
5 ms hop



TriCycle Training
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• Because of resource constraints, limited SONYC dataset to 2017 data from 25 
sensors ~25M 10 sec recordings (69k hours) 

• Randomly sampled 

• 1500 “epochs” (24M training examples)



Supervised downstream task: 
Urban sound tagging

�22

SONYC Urban Sound Tagging (UST) Dataset1 
• labeled subset of SONYC data 

• v0.1 Released in March 

• 2019 DCASE Urban Sound Tagging Challenge dataset 

• 10 sec recordings from SONYC sensors  
2351 training 
443 validation 
274 test (did not use) 

• Weak multi-label annotation on 23 fine-level classes  
from 8 coarse-level groups (we used the coarse labels): 
engine, machinery impact, non-machinery impact,  
powered saw, alert signal, music, human voice, dog 

• 3 Zooniverse volunteer annotators per recording 
Used minority vote to aggregate 

• Validation and test set annotated by SONYC team
1 s Mel-Spectrogram Input

Fixed Audio Encoder

Audio Encoder

Time-distributed Dense: 8 + Sigmoid

AutoPool Temporal Pooling

Output: 8 multi-label

2

1. Cartwright, et al. “SONYC Urban Sound Tagging (SONYC-UST): A multilabel dataset from an urban acoustic sensor network”, DCASE 2019 
2. McFee, Salamon, Bello. “Adaptive pooling operators for weakly labeled sound event detection”, TASLP 2018



Urban sound tagging results with TriCycle
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L3

Rand

Rand-init TriCycle 

Rand-init TriCycle +  High-activity Sampling (HS)

Rand-init TriCycle  w/ HS + PCEN

0.5 0.575 0.65 0.725 0.8

Micro-F1@0.5 Micro-AUPRC

Initialization TriCycle 
training

L3 No

Random No

Random Yes



Strategies to focus on foreground events: 
High-activity sampling
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• Focus on high activity regions but still evenly sample each hour 

• Compute SPL “activity” metric for each 10 s recording (SPL b/c precomputed): 
 
 
 
for SPL sequence     of length 80 (i.e., 10 s with 0.125 s step size) from sensor 

• Only sample from top 15 percent of each hour 

• Within each 10 s recording, sample 1 s clip, weighting by SPL  

vuut
79X

n=0

(dm,n � dm,n�1)2

d m



Urban sound tagging results with TriCycle
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L3

Rand

Rand-init TriCycle 

Rand-init TriCycle +  High-activity Sampling (HS)

Rand-init TriCycle  w/ HS + PCEN

0.5 0.575 0.65 0.725 0.8

Micro-F1@0.5 Micro-AUPRC

Initialization TriCycle 
training

High-activity 
sampling

L3 No

Random No

Random Yes

Random Yes Yes



Focusing on foreground events: 
Per-Channel Energy Normalization (PCEN)
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PCEN(t, f) =

 
E(t, f)

("+ (E
t⇤ �T )(t, f))

↵
+ �

!r

� �r

Temporal integration

Automatic gain control

Dynamic range compression

1. Wang, et al. “Trainable frontend for robust and far-field keyword spotting”, ICASSP 2017 
2. Lostanlen, Salamon, Cartwright, McFee, Farnsworth, Kelling, Bello, “Per-Channel Energy Normalization: Why and How”, SPL 2019

Pre-process with Per-Channel Energy Normalization (PCEN)1 

• Spectrogram processing that Gaussianizes and decorrelates frequency channels while retaining 
sound events of interest (parameter hand tuned based on recommendations in [2])



Strategies to focus on foreground events: 
Per-Channel Energy Normalization (PCEN)
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Pre-process with Per-Channel Energy Normalization (PCEN)1 

• Spectrogram processing that Gaussianizes and decorrelates frequency channels while retaining 
sound events of interest (parameter hand tuned based on recommendations in [2])

Log-scaling PCEN

vs

1. Wang, et al. “Trainable frontend for robust and far-field keyword spotting”, ICASSP 2017 
2. Lostanlen, Salamon, Cartwright, McFee, Farnsworth, Kelling, Bello, “Per-Channel Energy Normalization: Why and How”, SPL 2019



Urban sound tagging results with TriCycle
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L3

Rand

Rand-init TriCycle 

Rand-init TriCycle +  High-activity Sampling (HS)

Rand-init TriCycle  w/ HS + PCEN

0.5 0.575 0.65 0.725 0.8

Micro-F1@0.5 Micro-AUPRC

Initialization TriCycle 
training

High-activity 
sampling PCEN

L3 No

Random No

Random Yes

Random Yes Yes

Random Yes Yes Yes



Future work

• Investigate circular regression loss formulations for von Mises distributed data 

• Allow for groups of recordings with similar phase to be trained simultaneously 
and fused to increase the temporal signal and reduce impact of the background 
(hopefully reduce need for PCEN) 

• Analyze the benefits of each temporal cycle and what information is encoded, 
and what is not 

• Test TriCycle approach on other modalities

�29



Summary
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• Proposed an approach to self-supervised audio representation learning by 
predicting the time of recording 

• First self-supervised embedding model trained on long-term temporal structure 
(regardless of modality) 

• Able to train dataset-specific embeddings with single-modal data  

• Validated approach on an urban sound tagging task, matching performance of a 
general state-of-the-art audio embedding 

• Approach may be more general than audio, and well-suited for datasets from other 
sensor networks also having dense, longitudinal, timestamped data
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Sensor prediction results with TriCycle
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L3

Rand

Rand-init TriCycle 

Rand-init TriCycle +  High-activity Sampling (HS)

Rand-init TriCycle  w/ HS + PCEN

0.5 0.6 0.7 0.8 0.9

UST F1@0.5 UST AUPRC Sensor ID Acc

Initialization TriCycle 
training

High-activity 
sampling PCEN

L3 No

Random No

Random Yes

Random Yes Yes

Random Yes Yes Yes



Results
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(a) (b) (c) (d)
TriCycle MAD MAD MAD UST UST UST UST Sensor

Name Init. Train Variation Day Week Year F1@0.5 P@0.5 R@0.5 AUPRC Acc.
l3 L3-Net No — — — — 0.638 0.767 0.547 0.751 0.792

rand Rand. No — — — — 0.531 0.697 0.429 0.632 0.721
rand-tc Rand. Yes — 0.480 0.508 0.562 0.622 0.734 0.540 0.712 0.781
l3-tc-llr L3-Net Yes Low LR 0.370 0.531 0.540 0.638 0.764 0.548 0.739 0.824
l3-tc-hlr L3-Net Yes High LR 0.338 0.443 0.545 0.638 0.749 0.556 0.737 0.851

rand-tc-rs Rand. Yes Rand. Sampling 0.416 0.508 0.542 0.610 0.739 0.520 0.702 0.801
rand-tc-pcen Rand. Yes PCEN 0.351 0.423 0.444 0.650 0.767 0.564 0.744 0.831


