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MUSIC SIGNAL PROCESSING

In the early years of music information retrieval (MIR), research 
problems were often centered around conceptually simple 
tasks, and methods were evaluated on small, idealized data sets. 

A canonical example of this is genre recognition—i.e., Which 
one of n genres describes this song?—which was often evaluated 
on the GTZAN data set (1,000 musical excerpts balanced across 
ten genres) [1]. As task definitions were simple, so too were signal 
analysis pipelines, which often derived from methods for speech 
processing and recognition and typically consisted of simple 
methods for feature extraction, statistical modeling, and evalua-
tion. When describing a research system, the expected level of 
detail was superficial: it was sufficient to state, e.g., the number 
of mel-frequency cepstral coefficients used, the statistical model 
(e.g., a Gaussian mixture model), the choice of data set, and the 
evaluation criteria, without stating the underlying software depen-
dencies or implementation details. Because of an increased abun-
dance of methods, the proliferation of software toolkits, the explo-
sion of machine learning, and a focus shift toward more realistic 
problem settings, modern research systems are substantially more 
complex than their predecessors. Modern MIR researchers must 
pay careful attention to detail when processing metadata, imple-
menting evaluation criteria, and disseminating results.

Reproducibility and Complexity in MIR
The common practice in MIR research has been to publish find-
ings when a novel variation of some system component (such as 
the feature representation or statistical model) led to an increase 
in performance. This approach is sensible when all relevant fac-
tors of an experiment can be enumerated and controlled and when 
the researchers have confidence in the correctness and stability of 
the underlying implementation. However, over time, researchers 
have discovered that confounding factors were prevalent and un-
detected in many research systems, which undermines previous 
findings. Confounding factors can arise from quirks in data col-
lection [2], subtle design choices in feature representations [3], or 
unstated assumptions in the evaluation criteria [4].

As it turns out, implementation details can have greater 
impacts on overall performance than many practitioners might 
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expect. For example, Raffel et al. [4] reported that differences in 
evaluation implementation can produce deviations of 9–11% in 
commonly used metrics across diverse tasks including beat track-
ing, structural segmentation, and melody extraction. This results 
in a manifestation of the reproducibility crisis [5] within MIR: if 
implementation details can have such a profound effect on the 
reported performance of a method, it becomes difficult to trust or 
verify empirical results. Reproducibility is usually facilitated by 
access to common data sets, which would allow independent re-
implementations of a proposed method to be evaluated and com-
pared with published findings. However, MIR studies often rely 
on private or copyrighted data sets that cannot be shared openly. 
This shifts the burden of reproducibility from common data to 
common software: although data sets often cannot be shared, 
implementations usually can.

In this article, we share experiences and advice gained from 
developing open-source software (OSS) for MIR research with 
the hope that practitioners in other related disciplines will ben-
efit from our findings and become effective developers of open-
source scientific software. Many of the issues we encounter 
in MIR applications are likely to recur in more general signal 
processing areas as data sets increase in complexity, evaluation 
becomes more integrated and realistic, and traditionally small 
research components become integrated with larger systems.

Open-source scientific software
We agree with numerous authors [6] that description of research 
systems is no longer sufficient, which follows from the position 
that scholarly publication serves primarily as advertisement for 
the scientific contributions embodied by the software and data 
[7]. Here, we specifically advocate for adopting modern OSS 
development practices when communicating scientific results.

The motivations for our position, although grounded in 
music analysis applications, apply broadly to any field in which 
systems reach a sufficiently high degree of complexity. Releas-
ing software as open source requires more than posting code 
on a website. We highlight several key ingredients of good 
research software practices:

 ■ licensing: to define the conditions under which the soft-
ware can be used

 ■ documentation: so that users know how to operate the soft-
ware and what exactly it does

 ■ testing: so that the software is reliable
 ■ packaging: so that the software can be easily installed and 

managed in an environment
 ■ application interface design: so that the software can be 

easily integrated with other tools.
We discuss best practices for OSS development in the context of 
MIR applications and propose future directions for incorporat-
ing open-source and open-science methodology in the creation 
of data sets.

System architecture and components
Figure 1 shows a generic but representative MIR system pipe-
line consisting of seven distinct stages. We describe each stage 
to provide a sense of scale involved in MIR research, document 

sources of software dependencies, and give pointers to com-
mon components.

The first stage is data storage, which is often implemented 
by organizing data on a disk according to a file naming con-
vention and directory structure. Storage may also be provided 
by relational databases (e.g., SQLite [8]), key value/document 
stores (e.g., MongoDB at https://www.mongodb.com or Redis 
at https://redis.io), or structured numerical data formats (e.g., 
HDF5 [9]). As data sets become larger and more richly struc-
tured, storage plays a critical role in the overall system.

Input decoding, the second stage, loosely captures the trans-
formation of raw data (compressed audio or text data) into 
formats more convenient for modeling (typically vector represen-
tations). For audio, this consists primarily of compression codecs, 
which are provided by a few standard libraries (e.g., ffmpeg [10] 
or libsndfile [11]). Although different (lossy) codec implemen-
tations are not guaranteed to produce numerically equivalent 
results, the differences are usually small enough to be ignored 
for most practical applications. For annotations and metadata, the 
situation is less clear. Many data sets are provided in nonstan-
dard formats (e.g., comma-separated values) that require custom 
parsers that can be difficult to correctly implement and validate. 
Although several formats have been proposed for encoding anno-
tations and metadata (MusicXML [12], MEI [13], MPEG-7 [14], 
and JAMS [15]), at this point none have emerged as a clear stan-
dard in the MIR community.

The third stage, synthesis and augmentation, is not univer-
sal, but it has seen rapid growth in recent years. This stage 
captures processes that automatically modify or expand data 
sets, usually with the aim of increasing the size or diversity 
of training sets for fitting statistical models. Data augmenta-
tion methods apply systematic perturbations to an annotated 
data set, such as pitch shifting or time stretching, to induce 
these properties as invariants in the model [16]. Relatedly, 
degradation methods apply similar techniques to evaluation 
data as a means of diagnosing failure modes in a model once 
its parameters have been estimated [17]. Synthesis methods, 
like augmentation, seek to generate realistic examples either 
for training or evaluation, and, although the results are syn-
thetic, they are free of annotation errors [18]. Because these 
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FIGURE 1. A system block diagram of a typical MIR pipeline.
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processes can have a profound impact on the resulting model, 
it is important that augmentation and synthesis be fully docu-
mented and reproducible. Modern frameworks such as MUDA 
[16] and Scaper [18] achieve data provenance by embedding 
the generation/augmentation parameters within the generated 
objects, thereby facilitating reproducibility.

Data sampling, the fourth stage, refers to how a collection is 
partitioned and sampled when fitting statistical  models. For sta-
tistical evaluation, data are usually partitioned into training and 
testing subsets, and this step is usually implemented within a 
machine-learning toolkit (e.g., SciKit-Learn [19]). We empha-
size data partitioning because it can be notoriously difficult to 
implement correctly when dealing with related samples, such as 
multiple songs by a common artist [20]. Stochastic sampling is 
an increasingly important step, because it defines the sequences 
of examples used to estimate model parameters. Modern meth-
ods trained by stochastic gradient descent can be sensitive to 
initialization and sampling, so it is important that the entire 
process be codified and reproducible. Often, sampling is speci-
fied only implicitly and is provided by machine-learning frame-
works without explicit reproducibility guarantees. Sampling 
also becomes an engineering challenge when the training data 
exceed the memory capacity of the system, which is common 
when dealing with large data sets. For problems involving large 
data sets, some framework-independent libraries have been 
developed to handle data sampling under resource constraints 
(e.g., Pescador [21] and Fuel [22]).

Modeling, as the fifth stage, includes both feature extrac-
tion and statistical modeling, although the boundary between 
the two has blurred in recent years with the adoption of deep-
learning methods. Many open-source libraries exist for audio 
feature extraction, such as Essentia [23], librosa [24], aubio [25], 
Madmom [26], or Marsyas [27]. Different libraries may pro-
duce different numerical representations for the same feature 
(e.g., mel spectra), and even within a single library the robust-
ness of different features to input encoding/decoding may vary 
[28]. Although robustness is distinct from reproducibility, it 
highlights the importance of sharing specific software imple-
mentations. The statistical modeling component is most often 
provided by a machine-learning framework, such as SciKit-
Learn or Keras [29]. Although the specific choice of framework 
is largely up to the practitioner’s discretion, we emphasize that 
consideration should be given to how this choice interacts with 
the remaining two stages.

Referring to measuring the performance of an entire devel-
oped system (not just the statistical model component) is the 
sixth stage, evaluation. For simple classification problems, 
this functionality is typically provided by a machine-learning 
framework (e.g., SciKit-Learn). However, for domain-specific 
MIR problems, software packages have been developed to stan-
dardize evaluations, such as mir_eval for music description and 
source separation [4], sed_eval for sound event detection [30], 
and rival for recommender systems [31].

Finally, the last stage is deployment, by which we broadly 
mean dissemination of results (publication), packaging for 
reuse, or practical application in a real setting. This stage is 

perhaps the most overlooked in research and is possibly the 
most difficult to approach systematically, because the require-
ments vary substantially across projects. If we limit attention 
to reproducibility, software packaging emerges as an integral 
step to both internal reuse and scholarly dissemination. We 
therefore encourage researchers to take an active role in pack-
aging their software components, and in the “Best Practices for 
OSS Research” section we discuss specific tools for packaging 
and environment management.

Example: Onset detection
Although we focus on large, integrated systems, it is instruc-
tive to see how system complexity plays out on a smaller 
scale representative of earlier MIR work. As a conceptually 
simple example task, consider onset detection: the problem 
of estimating the timing of the beginning of musical notes 
in a recording. A method for solving this problem could be 
described next.

Audio was converted to 22,050 Hz (mono), and a 2,048-
point short-time Fourier transform (STFT) was computed with 
a 64-sample hop. The STFT was reduced to 128 mel-frequency 
bands, and magnitudes were compressed by log scaling. An 
onset envelope was computed using thresholded spectral dif-
ferencing, and peaks were selected using the method of Böck 
et al. [32]. This description is artificial, but the level of speci-
ficity given is representative of the literature.

Although precise enough to be approximately reimple-
mented by a knowledgeable practitioner, the description omits 
several details. To quantify the effect of these details, we con-
ducted an experiment in which some unstated parameters were 
varied, and the resulting accuracy was measured on a standard 
data set [33]. We varied the window function for STFT (Hann 
or Hamming), the log scaling [bias-stabilized log X1+^ h or 
clipped 80 dB below peak magnitude], and the differencing 
operator (first-order difference or a Savitsky–Golay filter, 
as is commonly used in delta feature implementations [34]). 
These three choices produce eight configurations that are all 
consistent with the given description, any of which constitutes 
a reasonable attempt at reconstructing the described method. 
There are, of course, many other parameters unstated: the 
exact specification of the mel filter bank, how aggregation 
across frequency bands was computed, and so on. For the sake 
of brevity, we limit the scope of this experiment to the three 
aforementioned choices.

Figure 2 shows the distribution of F-measure (harmonic 
mean of precision and recall) for each configuration. Although 
the best-performing versions are approximately equivalent, the 
range of scores is quite large, spanning 0.43 to 0.76. Moreover, 
some decisions can have a significant effect in some conditions 
(e.g., the differencing filter when using Hamming windows) 
that vanishes in other conditions (e.g., using a Hann window). 
This demonstrates that an incomplete system description can 
lead to incorrect conclusions about a particular design choice. 
The interventions performed in this experiment are confined to 
a single stage of Figure 1 (modeling), but realistic systems are 
susceptible to variation at each stage of the pipeline.
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Although this method is simple enough to be completely 
described in a short amount of text, a full description quickly 
becomes impractical as methods become more complex. In 
modern research systems, the only practical means of fully 
characterizing the implementation is to provide the source 
code and data.

Best practices for OSS research
As described in the previous sections, modern research pipe-
lines consist of many components with complex interactions. 
The engineering cost for developing and maintaining these 
components often exceeds that of implementing the core re-
search method for a particular study. Sculley et al. [35] dis-
cussed this cost as hidden technical debt, which is hard to 
notice and compounds silently. In this section, we provide 
recommendations for open-source research software develop-
ment, which can help improve code quality and reproducibil-
ity and foster efficient long-term collaboration on large proj-
ects with distributed contributors. The suggestions we make 
here are broadly applicable outside MIR [or digital signal 
processing (DSP)], and we draw attention to these points spe-
cifically because domain experts are often not aware of their 
importance. Many of the recommendations given here are 
also implemented concretely in Shablona (https://github.com/
uwescience/shablona), a template repository for starting sci-
entific Python projects. Interested readers may wish to browse 
the Shablona repository while reading the following sections. 
Readers entirely new to software development and OSS may 
additionally benefit from the instructional materials provid-
ed by Software Carpentry (https://software-carpentry.org/), 
the Hitchhiker’s Guide to Python (https://docs.python-guide 
.org/), and Wilson et al. [36].

Software licensing
The defining characteristic of OSS is the license. Licenses dic-
tate the terms under which software can be used, modified, or 
distributed. If no license is explicitly stated, then no use, modi-
fication, or distribution is permitted [37], and, to put it mildly, 
this significantly impedes adoption, reuse, and open science. 
Therefore, it is important to include a license agreement with 
any software intended for reuse and distribution.

There are many open-source licenses to choose from, but 
four of the most popular licenses are the Massachusetts Insti-
tute of Technology (MIT), Berkeley Software Distribution 
(BSD), Apache, and General Public License (GPL). MIT and 
BSD are simple, permissive licenses with minimal require-
ments on how derivative works are distributed. Apache is also 
permissive, but it contains additional provisions, including a 
grant of patent rights from contributors to users. In contrast, 
GPL requires derivative works to be distributed under the 
same license terms.

Not all of these licenses will suit an individual’s or orga-
nization’s needs. Therefore, it is common for particular com-
munities to tend toward a specific type of license: the scientific 
Python community generally uses the more permissive MIT- 
or BSD-style licenses, whereas the R programming language 

community mostly uses GPL-style licenses. A full discus-
sion of the relative merits of different licensing options is far 
beyond the scope of this article, but we recommend https://
choosealicense.com as a resource to help select and compare 
the various options.

Documentation
Documentation is the primary source of information for us-
ers of a piece of software, and it should be written and main-
tained with the most relevant and helpful content. A com-
mon practice for distributing documentation is to include it 
with the source code distribution so that it is tightly coupled 
to the specific software version in use. We recommend us-
ing a documentation build tool that can automatically gen-
erate a website using both explicit documentation files and 
the in-line comments in the source code for the application 
programming interface (API). Examples of such tools in-
clude Sphinx and MkDocs, and the generated website can be 
hosted on services such as Read the Docs (http://readthedocs 
.io). In addition to describing software functionality, documen-
tation should also include relevant bibliographic references and 
instructions for attribution.

To prevent the common problem of documentation falling 
out of sync with the software, it is important to document con-
currently with programming. Similarly, before each new ver-
sion of a package is released, a thorough audit of documentation 
should be conducted with respect to the changes introduced 
since the previous release. All changes should be summarized in 
a CHANGELOG or release notes section of the  documentation, 
ideally with time stamps, so that users can quickly discern 
changes introduced for each version. These simple steps, com-
bined with semantic versioning and version control (described 
in the following sections), require little effort, but they substan-
tially ease use and integration.

Finally, we emphasize the importance of providing exam-
ple code in the documentation. Although examples cannot 
replace a textual description of functionality, including self-
contained example usage for each function or class (along with 
the expected output of the example code) can often be a more 
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FIGURE 2. The results of the onset detection experiment: Each box corre-
sponds to the interquartile range over test recordings, with the mean and 
median scores indicated by • and |, respectively. Each row corresponds to 
a system configuration that is consistent with the description given in the 
“Example: Onset Detection” section, but differs in unstated parameters.
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effective way of communicating the behavior of a component 
to a novice user.

Version control software
Version control software (VCS) is an essential tool for modern soft-
ware development that 1) keeps track of who changed what, when, 
and for what reason; 2) supports creating and recreating snapshots 
of everything in the project’s history; and 3) enables a variety of 
tooling related to the software, such as test automation (see the 
“Automated Software Testing” section) and quality control (see the 
“Code Quality and Continuous Integration” section). Git, currently 
the most popular VCS in OSS development, is a distributed VCS 
where the full history of the project is stored 
in every developer’s computer. GitHub (https://
github .com) is a service that offers free host-
ing for open-source projects and leverages the 
decentralized nature of Git to provide a plat-
form for collaboration of software developers. 
Bundled with the pull-request feature (see the 
“Project Management, Pull Requests, and Code Review” section) 
that allows users (internal and external to a project) to suggest 
changes; issues trackers; and provides wikis, service integration, 
and website hosting, GitHub serves as the home for the majority of 
open-source projects.

VCS is also important for managing releases, which are 
packaged versions of the software intended to be easily down-
loaded and used. Each release is marked with a version string 
(such as 1.5.3), and semantic versioning (https://semver.org/) 
is a recommended practice of assigning software versions 
that can systematically inform the users about the incom-
patible changes to expect when updating versions. At a high 
level, semantic versioning states that API-compatible revi-
sions to a package retain the same major version index, which 
allows users (including other libraries) to loosely specify ver-
sion requirements.

Unfortunately, there are no guarantees that a commercial 
hosting service like GitHub will persist indefinitely. There-
fore, for software accompanying publications, we recommend 
using a funded research data repository such as Zenodo (see 
the “Data Distribution” section) in conjunction with GitHub. 
Large research data repositories typically guarantee multiple 
decades of longevity.

In short, we recommend using Git for efficient collabora-
tion and sustainable development of software, with the help of 
GitHub for software distribution and issue tracking. GitLab is 
an alternative to GitHub that also offers free hosting and issue 
tracking but can be locally installed and self-administered.

Automated software testing
It is beneficial for software projects to regularly perform auto-
mated tests to ensure the correctness of implementation. Au-
tomated software testing involves a set of specifications that 
precisely define the intended behaviors of the software, along 
with a testing framework that controls the execution of the tests 
and verifies that the software produces the expected outputs. 
The purpose of test automation is not only to verify that the 

current code works as intended but also to quickly detect any 
regressions caused by changes to any part of the software.

Unit testing refers to automated testing of the smallest test-
able parts of the software—units—which are usually indi-
vidual functions or classes. Specifying the behaviors of the 
individual units not only helps programmers find errors in the 
earliest stage of development but also encourages a modular 
design composed of loosely coupled, testable components. 
Other forms of testing include integration testing, where tests 
are designed to ensure that small components produce desired 
results when combined, and regression testing, which com-
pares current outputs to archived previous outputs so that 

unexpected changes (regressions) can be 
easily and automatically detected.

By defining the guarantees of each part of 
the software and writing tests that can detect 
deviations from the guarantees, automated 
testing helps improve the stability and reli-
ability of the software and ultimately reduces 

the potential cost of undetected or late-detected errors. Test-driv-
en development (TDD) is a software development process in 
which the specification is written before the actual development 
of features, and the implementations of features are then made to 
pass the tests [38]. Although TDD protocol is not always strictly 
followed, writing tests early in development can help program-
mers clarify the intended behavior of a function and discover 
components that need to be simplified into smaller units.

Code quality and continuous integration
Software developers should strive to maintain high-quality 
code, meaning that it is well formatted, well organized, and 
clear to read. Static analysis tools are utilities that quantify vari-
ous dimensions of code quality without executing the software. 
Many programming languages include static analyzers to test 
that code adheres to a style (formatting and variable naming) 
guideline, such as Python’s pycodestyle tool. Similarly, a linter 
is a static analysis tool that can suggest stylistic improvements 
to the structure of code and identify possible sources of errors. 
Linters can also perform a measurement of code complexity 
and produce warnings if, e.g., a function is too complex in its 
structure. A metric commonly used for measuring this is the cy-
clomatic complexity, which is the number of independent code 
paths in a unit of code.

Another important metric for code quality is test coverage, 
the proportion of code executed by the tests. Low code cov-
erage implies that the software is not thoroughly tested and 
thus is unlikely to be reliable. Having a low cyclomatic com-
plexity is helpful in achieving high code coverage, because it 
determines the number of test cases required to achieve the full 
code coverage.

Integration is the task of putting the development outputs 
to a product, i.e., ensuring quality by performing various auto-
mated tests and packaging the software for deployment. Con-
tinuous integration (CI) is a practice of performing integrations 
as frequently as possible by automating the process so that the 
status of every change to the code is automatically verified. In 
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addition to ensuring good software quality through automated 
tests, continuous integration provides a platform for automatic 
analysis of code quality. By using a version control system, 
continuous integration can be performed automatically at 
every registered change to the software, and services such as 
Travis CI (https://travis-ci.org), CircleCI (https://circleci.com), 
and AppVeyor (https://www.appveyor.com) provide free host-
ing for open-source projects.

Project management, pull requests, and code review
Although automated testing and static analysis are powerful 
tools, they must be used effectively to produce high-quality 
OSS. Ultimately, software is developed and maintained by hu-
mans, and there is no total substitute for proper project man-
agement. A widely adopted practice in OSS development is to 
require that all changes to a code base be submitted via pull re-
quests. A pull request combines one or more proposed revisions 
to the software as a unit that can either be accepted (merged 
into the main repository) or rejected. The benefit of this prac-
tice is that a pull request provides a convenient point for human 
intervention without the need to manually track each individual 
change. Continuous integration systems typically execute all 
tests on a proposed pull request, which gives the project manag-
er—who may be the same person as the pull-request author—a 
quick way to determine whether the proposed changes conform 
to style requirements, are sufficiently tested and documented, 
and do not introduce test regressions.

Typically, a pull request should not be merged if any of the 
following conditions are not satisfied: 1) all tests pass, 2) test 
coverage has not decreased, 3) the code adheres to style require-
ments, and 4) the proposed changes are properly documented. 
The first condition verifies that the proposed changes do not 
break existing behavior. The second condition requires that the 
proposed changes include a minimum amount of correspond-
ing tests. The third condition checks that the proposed changes 
are stylistically consistent with the project’s goals and existing 
code. The fourth condition ensures that the project’s documen-
tation does not fall out of sync with the source code. Of these, 
the first three conditions can be automated by continuous inte-
gration. However, none of the conditions ensures the correctness 
of the proposed change, which ultimately should be determined 
(as best as possible) by a thorough code review by one or more 
parties beyond the author of the proposed changes. Incidentally, 
code review is also the ideal time to check the fourth condition 
and request any modifications to the pull request. Adopting this 
workflow early in a project’s life cycle can provide structure to 
software development and ease the burden of adhering to best 
practices (especially documentation and testing).

Interoperability and interface design
Publishing an OSS library means its functions and classes can 
be used by many users, who will benefit from a maintainable, 
extensible, and easy-to-understand API design. This includes 
programming practices such as descriptive function and vari-
able naming, intuitive organization of functionality into sub-
modules, and sensible default parameter values.

In addition to the importance of intuitive API design, we 
argue that function-oriented interfaces are often better than 
object-oriented designs. In research settings, use cases are 
often procedural executions of steps in a pipeline, and using 
class hierarchies may entail unnecessary cognitive load. 
Functions have well-defined entry and exit points, making 
their life spans explicit, but objects maintain state indefi-
nitely, making it difficult to infer their scope. Moreover, 
classes do not easily traverse library boundaries, impeding 
interoperability between components. If an API expects or 
produces an instance of a certain class, it forces every pack-
age depending on the API to conform to the specification of 
the class, and this makes such packages sensitive to future 
changes in the class definition. For this reason, data con-
tainers can be better represented in the standardized, primi-
tive collection types, such as dictionaries, lists, or NumPy 
ndarray type. 

Despite these arguments for function-oriented design, 
object-oriented interfaces can be useful when the primary 
goal explicitly requires persistent state. This is the case, for 
instance, when packaging statistical models, where the state 
encapsulates the model parameters.

Packaging and environments
Software is often organized into packages to facilitate main-
tainability and distribution, and it is a responsibility of a pack-
age management system to provide means to install specific 
versions of desired packages. Many programming languages 
provide package management systems that help organize in-
stalled libraries and applications, such as pip for Python and 
CRAN for R. These provide a way to specify dependency 
requirements and user interfaces to install and upgrade soft-
ware. Because installing a software package becomes as sim-
ple as running a single-line command—[package-manag-
er] install [package-name]—it is often a good idea to 
distribute the software as a package for easier and wider adop-
tion, even if the project is not primarily a library. Packages 
are constructed by build tools, which vary across languages, 
such as Python’s setuptools or Java’s Gradle. Working in 
conjunction with package management software, build tools 
allow a project to be packaged with its dependencies and with 
their exact versions specified, along with the metadata to help 
index the project in a repository.

Within Python, there are two dominant package systems: 
the Python Package Index (PyPI or pip package manager) and 
Conda. The key distinction between these two systems is that 
pip can package only Python modules (and extensions writ-
ten in C), but Conda packages can be written in any language. 
Conda packages thus allow dependency tracking across lan-
guages, so that a package written in Python, e.g., can have 
dependencies written in C. This property is useful when devel-
oping large systems with heterogeneous components, as is 
common in MIR and likely to become common in DSP more 
broadly in the future.

With all dependencies and their versions specified for a proj-
ect, one can ensure the interoperability between  components 
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and thus have an environment that provides reproducible 
results. However, libraries are known to change over time and 
introduce incompatibilities across version upgrades. This can 
present a problem when reproducing an old experiment in a 
modern environment or when working on multiple projects 
with conflicting dependencies. Environment managers (such as 
Conda or virtualenv in Python) resolve this by providing iso-
lated environments in which packages can be installed. Virtual 
machines or containers like Docker can also provide isolated 
and reproducible environments that do not depend explicitly 
on the programming language in question. Container tools like 
ReproZip [39] can significantly ease reproducibility by auto-
matically generating virtual machine images to reproduce a 
specific experiment.

Project structure
Figure 3 provides our recommended repository structure for 
MIR projects using Python, although the template could be eas-
ily adapted to other domains and languages. The top-level di-
rectory should at least include the license and a readme.txt file 
that describes the project at a high level and provides contact 
information for the authors. The file env.yaml (or requirements 
.txt) describes the software dependencies (and versions) necessary 
to reproduce the project’s working environment; these should be 
automatically generated by a package or environment manager, 
e.g., by executing conda env export or pip freeze.

The data subdirectory should contain any static data used 
in the experiment, such as a filename index of a data set or con-
figuration files associated with various software components. 
Entire data sets need not be included in the repository here (to 
limit the size of the repository), but a script or instructions to 
procure the data should be provided.

The scripts subdirectory contains all of the scripts 
needed to generate the results of the project. Here, we have 

taken inspiration from the UNIX System V init system, 
which organizes (system startup) scripts alphanumerically to 
ensure a consistent order of execution. This simple conven-
tion eases reproducibility by eliminating any ambiguity in 
how the various components should be executed. The exact 
subdivision of steps is not critical, but the four listed here—
synthesis/augmentation, preprocessing, model estimation, 
and evaluation—apply broadly to many situations. We have 
found this loose organization to be flexible and useful in our 
own projects.

The preprocessing step can entail a variety of processes 
that generate intermediate data, such as precomputed feature 
transformations or train-test splits of a data set. For diagnos-
tic purposes, we specifically advocate generating train-test 
index partitions independent of model estimation and saving 
all index sets to disk as index files (e.g., splitNN/index _
train.json). This small amount of bookkeeping can signifi-
cantly ease debugging and reproducibility and can facilitate 
fair, paired comparisons between different methods over the 
same data partitions. All data produced automatically should 
be kept separate from the static data directory, e.g., in a dedi-
cated generated directory; if there are multiple train-test 
splits, then all split-dependent data should be kept in their own 
subdirectory (or otherwise separated by filename) to prevent 
statistical contamination across partitions.

We recommend that any (interactive) post hoc analysis of 
the results including figure generation for publications and be 
stored separately under notebooks. Here, we suggest Jupyter 
notebooks (https://www.jupyter.org/), which are portable and 
support interactive execution in a variety of languages. If mul-
tiple steps are necessary, we again recommend ordering the 
files alphanumerically to disambiguate execution order.

As a final note, we suggest that all (pseudo-)randomized 
computations throughout the process use a fixed seed, which 
can be easily set by a user. This ensures that the entire system 
is deterministic and can significantly aid in debugging and 
reproducibility.

Proposal: Tools for data collection and distribution
Just as complex systems often require multiple software compo-
nents, they increasingly also require multiple data sets. Similar 
to software, data sets can also change over time, either from ex-
tension or correction [40]. In addition, even small changes in the 
data collection and processing pipeline can affect results. For 
example, previous studies have shown that even the visualiza-
tion used in audio annotation can affect annotation quality [41]. 
Researchers also often process or clean annotations by remov-
ing outliers or aggregating annotations. These processes must 
be documented to appropriately use and extend annotations. 
Although many open-source principles can also be applied to 
data, there is much work to be done regarding tooling and in-
frastructure to support OSS practices for data collection. This 
section is both a position statement and a proposal to the com-
munity in which we outline what has been done and propose 
what needs to be done to move forward regarding the tooling of 
data collection and distribution.

project/
LICENSE.txt
README.txt
env.yaml (or requirements.txt)
data/

scripts/
01–data–augmentation.py
02–pre–process.py
03–model.py
04–evaluate.py

index–all.json

...
generated/

split01/

split02/

notebooks/

index–train.json
index–test.json
model_parameters.h5
results.json

01–analysis.ipynb

...

...

...

FIGURE 3. An example file structure for an MIR research project.
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Data annotation
First, we propose that the research community should develop 
and adopt standard, open-source tools for audio annotation. 
This ensures not only that we are not replicating existing work 
with several ad hoc annotation solutions but also that we are 
following best practices and can extend existing data sets de-
veloped by other research groups.

In addition to following the OSS principles outlined ear-
lier in this article, these tools should also be configurable, 
extensible, and web-based so that they can be easily deployed 
without requiring users (annotators) to install software. Web-
based solutions enable easy distribution of audio and crowd-
sourced annotation, now a standard method for obtaining large 
numbers of annotations. Although many of our data needs can 
be met using strong or weak labeling tasks, some of our data 
needs require more specialized, unforeseen tasks. Therefore, 
these tools should be extensible, i.e., with the capability to sup-
port new tasks and workflows. Finally, the configuration of 
these tools—instructions, workflow definitions, task configu-
rations, and so on—should also be stored in a single location in 
a human-readable format.

A number of open-source desktop applications have been 
already developed for annotation, such as Raven [42], Audac-
ity [43], or Tony [44], but only recently have we seen the emer-
gence of web-based tools for crowdsourcing. Audio Annotator 
is a simple web-based front end for strong 
labeling of audio with standard audio visual-
izations [41]. Although a good starting point, 
its functionality is limited, and it is not eas-
ily extensible. Freesound Datasets is a new 
web-based platform for crowdsourcing weak 
labels of audio, hosted on https://freesound 
.org [45]. However, it is currently limited to 
Freesound data and also is not extensible. Zooniverse is the most 
popular citizen science platform, with over a million registered 
users [46]. Zooniverse supports audio content and audio visual-
izations, but the available task types are limited to weak labeling 
and survey questions, and its extensibility is limited.

Data set file formats
As described in the “System Architecture and Component” 
section, standardized tools for reading and writing data file 
formats minimize the risk of parsing errors and ease distribu-
tion and use of data. There are several formats for encoding 
music annotations (MusicXML [12], MEI [13], MPEG-7 [14], 
and JAMS [15]), but these formats are primarily for managing 
annotations for a single recording rather than collections of an-
notated audio. To increase transparency and usability of data 
sets, we propose to develop a package to support collection 
management. Only the raw annotations and audio would be 
stored as data, and views could be defined to filter and process 
the data for a specific task. For example, if a data set needs to 
be cleaned to remove erroneous annotations or outliers, then 
users could write a clean view of the data without discarding 
information. Additionally, preregistered splits of the data could 
be implemented as a view on top of an existing view. Data set 

files would also contain standardized metadata and documen-
tation of the data set creation process.

Data documentation
To understand the content of data sets, use them appropriately, 
and extend them when necessary, data sets must be thoroughly 
documented. This motivates researchers to develop standard 
reporting mechanisms and tools to facilitate the documenta-
tion of the data collection process. Although standards should 
be developed and ratified by the community, the following are 
possible items to include for each annotation: 

 ■ annotation software and version
 ■ annotation software configuration
 ■ description of all tasks, including participant screening, 

training, annotation tasks, and surveys
 ■ description of annotator recruiting
 ■ monetary (or other extrinsic) compensation mechanisms
 ■ anonymized annotator identifiers
 ■ time stamps
 ■ data cleaning or processing procedures
 ■ data synthesis procedures description and code (if applicable).

All such documentation should provide reasonable explana-
tions and justifications for the choices made. This again helps 
the community understand the data and what it can be used 
for. As a community, we should also determine screening and 

demographic survey procedures and anno-
tator quality metrics. Once these have been 
established, documentation tools, in com-
bination with standardized annotation file 
formats, should be able to quickly aggre-
gate and display this information about the 
population as a whole. Best practices for data 
documentation have been proposed before in 

MIR, although adoption by the community has been slow [47]. 
Recently, Gebru et al. [48] proposed a standardized data sheet 
format for general machine-learning data sets, inspired by the 
standardized data sheets that accompany electronic components.

Data distribution
Finally, we need tools to distribute, maintain, and index pub-
lic data sets. Although many of the requirements for data 
are similar to those for software, data typically require more 
storage than software, rendering many existing services 
unsuitable. Data hosting should support versioning to sup-
port changes to data sets, provide digital object identifiers 
(DOIs), and guarantee longevity for several decades to pre-
vent broken URLs and ephemeral data. These data require-
ments files would specify the data sets and versions required 
by software, and they should be distributed along with the 
software requirements files. There are currently several 
hosting solutions that support large data sets, versioning, 
and DOIs and guarantee decades of longevity (e.g., Zenodo 
at https://zenodo.org, Figshare at https://figshare.org, Dryad 
at https://datadryad.org, and Dataverse at https://dataverse 
.org). Unfortunately, these solutions have yet to develop a 
data management tool like we have described. However, it 

First, we propose that 
the research community 
should develop and adopt 
standard, open-source 
tools for audio annotation.
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may be possible for a third party to build such a tool around 
the existing infrastructure.

In addition to hosting and distribution, we also need a plat-
form for developing and maintaining data. At the minimum, this 
would include an issue tracker for reporting errors and propos-
ing/discussing improvements to existing data sets. However, 
this could also double as a platform for proposing and discuss-
ing the creation of new data sets. Although such functionality 
would ideally be integrated into hosting services, this could also 
be developed around existing infrastructure or supported with 
existing platforms such as GitHub.

Conclusions
Although MIR has long been data driven and necessarily com-
plex because of the long chain of steps involved in bridging 
audio signals and semantically meaningful representations, 
we expect the core issues of system complexity to eventually 
pervade all data-driven areas of signal processing. The general 
architecture outlined in the “System Architecture and Compo-
nents” section is generic enough to capture most MIR use cases, 
and, although different domains might exhibit slightly different 
workflows, we expect that the overall system complexity issue 
will arise across domains. The recommendations put forward 
in the “Best Practices for OSS Research” section should serve 
as a solid basis for improving the quality and reproducibility of 
scholarly research. While we do not expect signal processing 
researchers to become experts in software engineering, we fo-
cus here on software precisely because it is often overlooked as 
a crucial component of research systems. Although most of our 
recommendations concern software, we see data management 
as the next frontier in improving data-driven research in general 
and signal processing research specifically. Our proposal is in-
tended to resolve certain shortcomings in our current practices 
for data set construction, but it may be readily adapted to dif-
ferent application domains. We encourage future researchers to 
think carefully about data construction, preservation, and man-
agement issues moving forward.
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