
128 IEEE SIgnal ProcESSIng MagazInE | January 2019 | 1053-5888/19©2019IEEE

Brian McFee, Jong Wook Kim, Mark Cartwright,
Justin Salamon, Rachel Bittner, and Juan Pablo Bello

MUSIC SIGNAL PROCESSING

In the early years of music information retrieval (MIR), research
problems were often centered around conceptually simple
tasks, and methods were evaluated on small, idealized data sets.

A canonical example of this is genre recognition—i.e., Which
one of n genres describes this song?—which was often evaluated
on the GTZAN data set (1,000 musical excerpts balanced across
ten genres) [1]. As task definitions were simple, so too were signal
analysis pipelines, which often derived from methods for speech
processing and recognition and typically consisted of simple
methods for feature extraction, statistical modeling, and evalua-
tion. When describing a research system, the expected level of
detail was superficial: it was sufficient to state, e.g., the number
of mel-frequency cepstral coefficients used, the statistical model
(e.g., a Gaussian mixture model), the choice of data set, and the
evaluation criteria, without stating the underlying software depen-
dencies or implementation details. Because of an increased abun-
dance of methods, the proliferation of software toolkits, the explo-
sion of machine learning, and a focus shift toward more realistic
problem settings, modern research systems are substantially more
complex than their predecessors. Modern MIR researchers must
pay careful attention to detail when processing metadata, imple-
menting evaluation criteria, and disseminating results.

Reproducibility and Complexity in MIR
The common practice in MIR research has been to publish find-
ings when a novel variation of some system component (such as
the feature representation or statistical model) led to an increase
in performance. This approach is sensible when all relevant fac-
tors of an experiment can be enumerated and controlled and when
the researchers have confidence in the correctness and stability of
the underlying implementation. However, over time, researchers
have discovered that confounding factors were prevalent and un-
detected in many research systems, which undermines previous
findings. Confounding factors can arise from quirks in data col-
lection [2], subtle design choices in feature representations [3], or
unstated assumptions in the evaluation criteria [4].

As it turns out, implementation details can have greater
impacts on overall performance than many practitioners might

Digital Object Identifier 10.1109/MSP.2018.2875349
Date of publication: 24 December 2018

Open-Source Practices
for Music Signal Processing Research
Recommendations for transparent, sustainable, and reproducible audio research

©istockphoto.com/traffic_analyzer

129IEEE SIgnal ProcESSIng MagazInE | January 2019 |

expect. For example, Raffel et al. [4] reported that differences in
evaluation implementation can produce deviations of 9–11% in
commonly used metrics across diverse tasks including beat track-
ing, structural segmentation, and melody extraction. This results
in a manifestation of the reproducibility crisis [5] within MIR: if
implementation details can have such a profound effect on the
reported performance of a method, it becomes difficult to trust or
verify empirical results. Reproducibility is usually facilitated by
access to common data sets, which would allow independent re-
implementations of a proposed method to be evaluated and com-
pared with published findings. However, MIR studies often rely
on private or copyrighted data sets that cannot be shared openly.
This shifts the burden of reproducibility from common data to
common software: although data sets often cannot be shared,
implementations usually can.

In this article, we share experiences and advice gained from
developing open-source software (OSS) for MIR research with
the hope that practitioners in other related disciplines will ben-
efit from our findings and become effective developers of open-
source scientific software. Many of the issues we encounter
in MIR applications are likely to recur in more general signal
processing areas as data sets increase in complexity, evaluation
becomes more integrated and realistic, and traditionally small
research components become integrated with larger systems.

Open-source scientific software
We agree with numerous authors [6] that description of research
systems is no longer sufficient, which follows from the position
that scholarly publication serves primarily as advertisement for
the scientific contributions embodied by the software and data
[7]. Here, we specifically advocate for adopting modern OSS
development practices when communicating scientific results.

The motivations for our position, although grounded in
music analysis applications, apply broadly to any field in which
systems reach a sufficiently high degree of complexity. Releas-
ing software as open source requires more than posting code
on a website. We highlight several key ingredients of good
research software practices:

 ■ licensing: to define the conditions under which the soft-
ware can be used

 ■ documentation: so that users know how to operate the soft-
ware and what exactly it does

 ■ testing: so that the software is reliable
 ■ packaging: so that the software can be easily installed and

managed in an environment
 ■ application interface design: so that the software can be

easily integrated with other tools.
We discuss best practices for OSS development in the context of
MIR applications and propose future directions for incorporat-
ing open-source and open-science methodology in the creation
of data sets.

System architecture and components
Figure 1 shows a generic but representative MIR system pipe-
line consisting of seven distinct stages. We describe each stage
to provide a sense of scale involved in MIR research, document

sources of software dependencies, and give pointers to com-
mon components.

The first stage is data storage, which is often implemented
by organizing data on a disk according to a file naming con-
vention and directory structure. Storage may also be provided
by relational databases (e.g., SQLite [8]), key value/document
stores (e.g., MongoDB at https://www.mongodb.com or Redis
at https://redis.io), or structured numerical data formats (e.g.,
HDF5 [9]). As data sets become larger and more richly struc-
tured, storage plays a critical role in the overall system.

Input decoding, the second stage, loosely captures the trans-
formation of raw data (compressed audio or text data) into
formats more convenient for modeling (typically vector represen-
tations). For audio, this consists primarily of compression codecs,
which are provided by a few standard libraries (e.g., ffmpeg [10]
or libsndfile [11]). Although different (lossy) codec implemen-
tations are not guaranteed to produce numerically equivalent
results, the differences are usually small enough to be ignored
for most practical applications. For annotations and metadata, the
situation is less clear. Many data sets are provided in nonstan-
dard formats (e.g., comma-separated values) that require custom
parsers that can be difficult to correctly implement and validate.
Although several formats have been proposed for encoding anno-
tations and metadata (MusicXML [12], MEI [13], MPEG-7 [14],
and JAMS [15]), at this point none have emerged as a clear stan-
dard in the MIR community.

The third stage, synthesis and augmentation, is not univer-
sal, but it has seen rapid growth in recent years. This stage
captures processes that automatically modify or expand data
sets, usually with the aim of increasing the size or diversity
of training sets for fitting statistical models. Data augmenta-
tion methods apply systematic perturbations to an annotated
data set, such as pitch shifting or time stretching, to induce
these properties as invariants in the model [16]. Relatedly,
degradation methods apply similar techniques to evaluation
data as a means of diagnosing failure modes in a model once
its parameters have been estimated [17]. Synthesis methods,
like augmentation, seek to generate realistic examples either
for training or evaluation, and, although the results are syn-
thetic, they are free of annotation errors [18]. Because these

Data
(Audio and Annotations)

Codecs and Parsing

Synthesis and Augmentation

Data Sampling

Modeling

Evaluation

Deployment

FIGURE 1. A system block diagram of a typical MIR pipeline.

130 IEEE SIgnal ProcESSIng MagazInE | January 2019 |

processes can have a profound impact on the resulting model,
it is important that augmentation and synthesis be fully docu-
mented and reproducible. Modern frameworks such as MUDA
[16] and Scaper [18] achieve data provenance by embedding
the generation/augmentation parameters within the generated
objects, thereby facilitating reproducibility.

Data sampling, the fourth stage, refers to how a collection is
partitioned and sampled when fitting statistical models. For sta-
tistical evaluation, data are usually partitioned into training and
testing subsets, and this step is usually implemented within a
machine-learning toolkit (e.g., SciKit-Learn [19]). We empha-
size data partitioning because it can be notoriously difficult to
implement correctly when dealing with related samples, such as
multiple songs by a common artist [20]. Stochastic sampling is
an increasingly important step, because it defines the sequences
of examples used to estimate model parameters. Modern meth-
ods trained by stochastic gradient descent can be sensitive to
initialization and sampling, so it is important that the entire
process be codified and reproducible. Often, sampling is speci-
fied only implicitly and is provided by machine-learning frame-
works without explicit reproducibility guarantees. Sampling
also becomes an engineering challenge when the training data
exceed the memory capacity of the system, which is common
when dealing with large data sets. For problems involving large
data sets, some framework-independent libraries have been
developed to handle data sampling under resource constraints
(e.g., Pescador [21] and Fuel [22]).

Modeling, as the fifth stage, includes both feature extrac-
tion and statistical modeling, although the boundary between
the two has blurred in recent years with the adoption of deep-
learning methods. Many open-source libraries exist for audio
feature extraction, such as Essentia [23], librosa [24], aubio [25],
Madmom [26], or Marsyas [27]. Different libraries may pro-
duce different numerical representations for the same feature
(e.g., mel spectra), and even within a single library the robust-
ness of different features to input encoding/decoding may vary
[28]. Although robustness is distinct from reproducibility, it
highlights the importance of sharing specific software imple-
mentations. The statistical modeling component is most often
provided by a machine-learning framework, such as SciKit-
Learn or Keras [29]. Although the specific choice of framework
is largely up to the practitioner’s discretion, we emphasize that
consideration should be given to how this choice interacts with
the remaining two stages.

Referring to measuring the performance of an entire devel-
oped system (not just the statistical model component) is the
sixth stage, evaluation. For simple classification problems,
this functionality is typically provided by a machine-learning
framework (e.g., SciKit-Learn). However, for domain-specific
MIR problems, software packages have been developed to stan-
dardize evaluations, such as mir_eval for music description and
source separation [4], sed_eval for sound event detection [30],
and rival for recommender systems [31].

Finally, the last stage is deployment, by which we broadly
mean dissemination of results (publication), packaging for
reuse, or practical application in a real setting. This stage is

perhaps the most overlooked in research and is possibly the
most difficult to approach systematically, because the require-
ments vary substantially across projects. If we limit attention
to reproducibility, software packaging emerges as an integral
step to both internal reuse and scholarly dissemination. We
therefore encourage researchers to take an active role in pack-
aging their software components, and in the “Best Practices for
OSS Research” section we discuss specific tools for packaging
and environment management.

Example: Onset detection
Although we focus on large, integrated systems, it is instruc-
tive to see how system complexity plays out on a smaller
scale representative of earlier MIR work. As a conceptually
simple example task, consider onset detection: the problem
of estimating the timing of the beginning of musical notes
in a recording. A method for solving this problem could be
described next.

Audio was converted to 22,050 Hz (mono), and a 2,048-
point short-time Fourier transform (STFT) was computed with
a 64-sample hop. The STFT was reduced to 128 mel-frequency
bands, and magnitudes were compressed by log scaling. An
onset envelope was computed using thresholded spectral dif-
ferencing, and peaks were selected using the method of Böck
et al. [32]. This description is artificial, but the level of speci-
ficity given is representative of the literature.

Although precise enough to be approximately reimple-
mented by a knowledgeable practitioner, the description omits
several details. To quantify the effect of these details, we con-
ducted an experiment in which some unstated parameters were
varied, and the resulting accuracy was measured on a standard
data set [33]. We varied the window function for STFT (Hann
or Hamming), the log scaling [bias-stabilized log X1+^ h or
clipped 80 dB below peak magnitude], and the differencing
operator (first-order difference or a Savitsky–Golay filter,
as is commonly used in delta feature implementations [34]).
These three choices produce eight configurations that are all
consistent with the given description, any of which constitutes
a reasonable attempt at reconstructing the described method.
There are, of course, many other parameters unstated: the
exact specification of the mel filter bank, how aggregation
across frequency bands was computed, and so on. For the sake
of brevity, we limit the scope of this experiment to the three
aforementioned choices.

Figure 2 shows the distribution of F-measure (harmonic
mean of precision and recall) for each configuration. Although
the best-performing versions are approximately equivalent, the
range of scores is quite large, spanning 0.43 to 0.76. Moreover,
some decisions can have a significant effect in some conditions
(e.g., the differencing filter when using Hamming windows)
that vanishes in other conditions (e.g., using a Hann window).
This demonstrates that an incomplete system description can
lead to incorrect conclusions about a particular design choice.
The interventions performed in this experiment are confined to
a single stage of Figure 1 (modeling), but realistic systems are
susceptible to variation at each stage of the pipeline.

131IEEE SIgnal ProcESSIng MagazInE | January 2019 |

Although this method is simple enough to be completely
described in a short amount of text, a full description quickly
becomes impractical as methods become more complex. In
modern research systems, the only practical means of fully
characterizing the implementation is to provide the source
code and data.

Best practices for OSS research
As described in the previous sections, modern research pipe-
lines consist of many components with complex interactions.
The engineering cost for developing and maintaining these
components often exceeds that of implementing the core re-
search method for a particular study. Sculley et al. [35] dis-
cussed this cost as hidden technical debt, which is hard to
notice and compounds silently. In this section, we provide
recommendations for open-source research software develop-
ment, which can help improve code quality and reproducibil-
ity and foster efficient long-term collaboration on large proj-
ects with distributed contributors. The suggestions we make
here are broadly applicable outside MIR [or digital signal
processing (DSP)], and we draw attention to these points spe-
cifically because domain experts are often not aware of their
importance. Many of the recommendations given here are
also implemented concretely in Shablona (https://github.com/
uwescience/shablona), a template repository for starting sci-
entific Python projects. Interested readers may wish to browse
the Shablona repository while reading the following sections.
Readers entirely new to software development and OSS may
additionally benefit from the instructional materials provid-
ed by Software Carpentry (https://software-carpentry.org/),
the Hitchhiker’s Guide to Python (https://docs.python-guide
.org/), and Wilson et al. [36].

Software licensing
The defining characteristic of OSS is the license. Licenses dic-
tate the terms under which software can be used, modified, or
distributed. If no license is explicitly stated, then no use, modi-
fication, or distribution is permitted [37], and, to put it mildly,
this significantly impedes adoption, reuse, and open science.
Therefore, it is important to include a license agreement with
any software intended for reuse and distribution.

There are many open-source licenses to choose from, but
four of the most popular licenses are the Massachusetts Insti-
tute of Technology (MIT), Berkeley Software Distribution
(BSD), Apache, and General Public License (GPL). MIT and
BSD are simple, permissive licenses with minimal require-
ments on how derivative works are distributed. Apache is also
permissive, but it contains additional provisions, including a
grant of patent rights from contributors to users. In contrast,
GPL requires derivative works to be distributed under the
same license terms.

Not all of these licenses will suit an individual’s or orga-
nization’s needs. Therefore, it is common for particular com-
munities to tend toward a specific type of license: the scientific
Python community generally uses the more permissive MIT-
or BSD-style licenses, whereas the R programming language

community mostly uses GPL-style licenses. A full discus-
sion of the relative merits of different licensing options is far
beyond the scope of this article, but we recommend https://
choosealicense.com as a resource to help select and compare
the various options.

Documentation
Documentation is the primary source of information for us-
ers of a piece of software, and it should be written and main-
tained with the most relevant and helpful content. A com-
mon practice for distributing documentation is to include it
with the source code distribution so that it is tightly coupled
to the specific software version in use. We recommend us-
ing a documentation build tool that can automatically gen-
erate a website using both explicit documentation files and
the in-line comments in the source code for the application
programming interface (API). Examples of such tools in-
clude Sphinx and MkDocs, and the generated website can be
hosted on services such as Read the Docs (http://readthedocs
.io). In addition to describing software functionality, documen-
tation should also include relevant bibliographic references and
instructions for attribution.

To prevent the common problem of documentation falling
out of sync with the software, it is important to document con-
currently with programming. Similarly, before each new ver-
sion of a package is released, a thorough audit of documentation
should be conducted with respect to the changes introduced
since the previous release. All changes should be summarized in
a CHANGELOG or release notes section of the documentation,
ideally with time stamps, so that users can quickly discern
changes introduced for each version. These simple steps, com-
bined with semantic versioning and version control (described
in the following sections), require little effort, but they substan-
tially ease use and integration.

Finally, we emphasize the importance of providing exam-
ple code in the documentation. Although examples cannot
replace a textual description of functionality, including self-
contained example usage for each function or class (along with
the expected output of the example code) can often be a more

hamming - dB_clip - diff

hann - dB_clip - diff

hann - log1p - diff
hann - log1p - sav-gol

hann - dB_clip - sav-gol

hamming - dB_clip - sav-gol
hamming - log1p - diff

hamming - log1p - sav-gol

0.0 0.2 0.4 0.6 0.8 1
F -Measure

FIGURE 2. The results of the onset detection experiment: Each box corre-
sponds to the interquartile range over test recordings, with the mean and
median scores indicated by • and |, respectively. Each row corresponds to
a system configuration that is consistent with the description given in the
“Example: Onset Detection” section, but differs in unstated parameters.

132 IEEE SIgnal ProcESSIng MagazInE | January 2019 |

effective way of communicating the behavior of a component
to a novice user.

Version control software
Version control software (VCS) is an essential tool for modern soft-
ware development that 1) keeps track of who changed what, when,
and for what reason; 2) supports creating and recreating snapshots
of everything in the project’s history; and 3) enables a variety of
tooling related to the software, such as test automation (see the
“Automated Software Testing” section) and quality control (see the
“Code Quality and Continuous Integration” section). Git, currently
the most popular VCS in OSS development, is a distributed VCS
where the full history of the project is stored
in every developer’s computer. GitHub (https://
github .com) is a service that offers free host-
ing for open-source projects and leverages the
decentralized nature of Git to provide a plat-
form for collaboration of software developers.
Bundled with the pull-request feature (see the
“Project Management, Pull Requests, and Code Review” section)
that allows users (internal and external to a project) to suggest
changes; issues trackers; and provides wikis, service integration,
and website hosting, GitHub serves as the home for the majority of
open-source projects.

VCS is also important for managing releases, which are
packaged versions of the software intended to be easily down-
loaded and used. Each release is marked with a version string
(such as 1.5.3), and semantic versioning (https://semver.org/)
is a recommended practice of assigning software versions
that can systematically inform the users about the incom-
patible changes to expect when updating versions. At a high
level, semantic versioning states that API-compatible revi-
sions to a package retain the same major version index, which
allows users (including other libraries) to loosely specify ver-
sion requirements.

Unfortunately, there are no guarantees that a commercial
hosting service like GitHub will persist indefinitely. There-
fore, for software accompanying publications, we recommend
using a funded research data repository such as Zenodo (see
the “Data Distribution” section) in conjunction with GitHub.
Large research data repositories typically guarantee multiple
decades of longevity.

In short, we recommend using Git for efficient collabora-
tion and sustainable development of software, with the help of
GitHub for software distribution and issue tracking. GitLab is
an alternative to GitHub that also offers free hosting and issue
tracking but can be locally installed and self-administered.

Automated software testing
It is beneficial for software projects to regularly perform auto-
mated tests to ensure the correctness of implementation. Au-
tomated software testing involves a set of specifications that
precisely define the intended behaviors of the software, along
with a testing framework that controls the execution of the tests
and verifies that the software produces the expected outputs.
The purpose of test automation is not only to verify that the

current code works as intended but also to quickly detect any
regressions caused by changes to any part of the software.

Unit testing refers to automated testing of the smallest test-
able parts of the software—units—which are usually indi-
vidual functions or classes. Specifying the behaviors of the
individual units not only helps programmers find errors in the
earliest stage of development but also encourages a modular
design composed of loosely coupled, testable components.
Other forms of testing include integration testing, where tests
are designed to ensure that small components produce desired
results when combined, and regression testing, which com-
pares current outputs to archived previous outputs so that

unexpected changes (regressions) can be
easily and automatically detected.

By defining the guarantees of each part of
the software and writing tests that can detect
deviations from the guarantees, automated
testing helps improve the stability and reli-
ability of the software and ultimately reduces

the potential cost of undetected or late-detected errors. Test-driv-
en development (TDD) is a software development process in
which the specification is written before the actual development
of features, and the implementations of features are then made to
pass the tests [38]. Although TDD protocol is not always strictly
followed, writing tests early in development can help program-
mers clarify the intended behavior of a function and discover
components that need to be simplified into smaller units.

Code quality and continuous integration
Software developers should strive to maintain high-quality
code, meaning that it is well formatted, well organized, and
clear to read. Static analysis tools are utilities that quantify vari-
ous dimensions of code quality without executing the software.
Many programming languages include static analyzers to test
that code adheres to a style (formatting and variable naming)
guideline, such as Python’s pycodestyle tool. Similarly, a linter
is a static analysis tool that can suggest stylistic improvements
to the structure of code and identify possible sources of errors.
Linters can also perform a measurement of code complexity
and produce warnings if, e.g., a function is too complex in its
structure. A metric commonly used for measuring this is the cy-
clomatic complexity, which is the number of independent code
paths in a unit of code.

Another important metric for code quality is test coverage,
the proportion of code executed by the tests. Low code cov-
erage implies that the software is not thoroughly tested and
thus is unlikely to be reliable. Having a low cyclomatic com-
plexity is helpful in achieving high code coverage, because it
determines the number of test cases required to achieve the full
code coverage.

Integration is the task of putting the development outputs
to a product, i.e., ensuring quality by performing various auto-
mated tests and packaging the software for deployment. Con-
tinuous integration (CI) is a practice of performing integrations
as frequently as possible by automating the process so that the
status of every change to the code is automatically verified. In

Large research data
repositories typically
guarantee multiple
decades of longevity.

133IEEE SIgnal ProcESSIng MagazInE | January 2019 |

addition to ensuring good software quality through automated
tests, continuous integration provides a platform for automatic
analysis of code quality. By using a version control system,
continuous integration can be performed automatically at
every registered change to the software, and services such as
Travis CI (https://travis-ci.org), CircleCI (https://circleci.com),
and AppVeyor (https://www.appveyor.com) provide free host-
ing for open-source projects.

Project management, pull requests, and code review
Although automated testing and static analysis are powerful
tools, they must be used effectively to produce high-quality
OSS. Ultimately, software is developed and maintained by hu-
mans, and there is no total substitute for proper project man-
agement. A widely adopted practice in OSS development is to
require that all changes to a code base be submitted via pull re-
quests. A pull request combines one or more proposed revisions
to the software as a unit that can either be accepted (merged
into the main repository) or rejected. The benefit of this prac-
tice is that a pull request provides a convenient point for human
intervention without the need to manually track each individual
change. Continuous integration systems typically execute all
tests on a proposed pull request, which gives the project manag-
er—who may be the same person as the pull-request author—a
quick way to determine whether the proposed changes conform
to style requirements, are sufficiently tested and documented,
and do not introduce test regressions.

Typically, a pull request should not be merged if any of the
following conditions are not satisfied: 1) all tests pass, 2) test
coverage has not decreased, 3) the code adheres to style require-
ments, and 4) the proposed changes are properly documented.
The first condition verifies that the proposed changes do not
break existing behavior. The second condition requires that the
proposed changes include a minimum amount of correspond-
ing tests. The third condition checks that the proposed changes
are stylistically consistent with the project’s goals and existing
code. The fourth condition ensures that the project’s documen-
tation does not fall out of sync with the source code. Of these,
the first three conditions can be automated by continuous inte-
gration. However, none of the conditions ensures the correctness
of the proposed change, which ultimately should be determined
(as best as possible) by a thorough code review by one or more
parties beyond the author of the proposed changes. Incidentally,
code review is also the ideal time to check the fourth condition
and request any modifications to the pull request. Adopting this
workflow early in a project’s life cycle can provide structure to
software development and ease the burden of adhering to best
practices (especially documentation and testing).

Interoperability and interface design
Publishing an OSS library means its functions and classes can
be used by many users, who will benefit from a maintainable,
extensible, and easy-to-understand API design. This includes
programming practices such as descriptive function and vari-
able naming, intuitive organization of functionality into sub-
modules, and sensible default parameter values.

In addition to the importance of intuitive API design, we
argue that function-oriented interfaces are often better than
object-oriented designs. In research settings, use cases are
often procedural executions of steps in a pipeline, and using
class hierarchies may entail unnecessary cognitive load.
Functions have well-defined entry and exit points, making
their life spans explicit, but objects maintain state indefi-
nitely, making it difficult to infer their scope. Moreover,
classes do not easily traverse library boundaries, impeding
interoperability between components. If an API expects or
produces an instance of a certain class, it forces every pack-
age depending on the API to conform to the specification of
the class, and this makes such packages sensitive to future
changes in the class definition. For this reason, data con-
tainers can be better represented in the standardized, primi-
tive collection types, such as dictionaries, lists, or NumPy
ndarray type.

Despite these arguments for function-oriented design,
object-oriented interfaces can be useful when the primary
goal explicitly requires persistent state. This is the case, for
instance, when packaging statistical models, where the state
encapsulates the model parameters.

Packaging and environments
Software is often organized into packages to facilitate main-
tainability and distribution, and it is a responsibility of a pack-
age management system to provide means to install specific
versions of desired packages. Many programming languages
provide package management systems that help organize in-
stalled libraries and applications, such as pip for Python and
CRAN for R. These provide a way to specify dependency
requirements and user interfaces to install and upgrade soft-
ware. Because installing a software package becomes as sim-
ple as running a single-line command—[package-manag-
er] install [package-name]—it is often a good idea to
distribute the software as a package for easier and wider adop-
tion, even if the project is not primarily a library. Packages
are constructed by build tools, which vary across languages,
such as Python’s setuptools or Java’s Gradle. Working in
conjunction with package management software, build tools
allow a project to be packaged with its dependencies and with
their exact versions specified, along with the metadata to help
index the project in a repository.

Within Python, there are two dominant package systems:
the Python Package Index (PyPI or pip package manager) and
Conda. The key distinction between these two systems is that
pip can package only Python modules (and extensions writ-
ten in C), but Conda packages can be written in any language.
Conda packages thus allow dependency tracking across lan-
guages, so that a package written in Python, e.g., can have
dependencies written in C. This property is useful when devel-
oping large systems with heterogeneous components, as is
common in MIR and likely to become common in DSP more
broadly in the future.

With all dependencies and their versions specified for a proj-
ect, one can ensure the interoperability between components

134 IEEE SIgnal ProcESSIng MagazInE | January 2019 |

and thus have an environment that provides reproducible
results. However, libraries are known to change over time and
introduce incompatibilities across version upgrades. This can
present a problem when reproducing an old experiment in a
modern environment or when working on multiple projects
with conflicting dependencies. Environment managers (such as
Conda or virtualenv in Python) resolve this by providing iso-
lated environments in which packages can be installed. Virtual
machines or containers like Docker can also provide isolated
and reproducible environments that do not depend explicitly
on the programming language in question. Container tools like
ReproZip [39] can significantly ease reproducibility by auto-
matically generating virtual machine images to reproduce a
specific experiment.

Project structure
Figure 3 provides our recommended repository structure for
MIR projects using Python, although the template could be eas-
ily adapted to other domains and languages. The top-level di-
rectory should at least include the license and a readme.txt file
that describes the project at a high level and provides contact
information for the authors. The file env.yaml (or requirements
.txt) describes the software dependencies (and versions) necessary
to reproduce the project’s working environment; these should be
automatically generated by a package or environment manager,
e.g., by executing conda env export or pip freeze.

The data subdirectory should contain any static data used
in the experiment, such as a filename index of a data set or con-
figuration files associated with various software components.
Entire data sets need not be included in the repository here (to
limit the size of the repository), but a script or instructions to
procure the data should be provided.

The scripts subdirectory contains all of the scripts
needed to generate the results of the project. Here, we have

taken inspiration from the UNIX System V init system,
which organizes (system startup) scripts alphanumerically to
ensure a consistent order of execution. This simple conven-
tion eases reproducibility by eliminating any ambiguity in
how the various components should be executed. The exact
subdivision of steps is not critical, but the four listed here—
synthesis/augmentation, preprocessing, model estimation,
and evaluation—apply broadly to many situations. We have
found this loose organization to be flexible and useful in our
own projects.

The preprocessing step can entail a variety of processes
that generate intermediate data, such as precomputed feature
transformations or train-test splits of a data set. For diagnos-
tic purposes, we specifically advocate generating train-test
index partitions independent of model estimation and saving
all index sets to disk as index files (e.g., splitNN/index _
train.json). This small amount of bookkeeping can signifi-
cantly ease debugging and reproducibility and can facilitate
fair, paired comparisons between different methods over the
same data partitions. All data produced automatically should
be kept separate from the static data directory, e.g., in a dedi-
cated generated directory; if there are multiple train-test
splits, then all split-dependent data should be kept in their own
subdirectory (or otherwise separated by filename) to prevent
statistical contamination across partitions.

We recommend that any (interactive) post hoc analysis of
the results including figure generation for publications and be
stored separately under notebooks. Here, we suggest Jupyter
notebooks (https://www.jupyter.org/), which are portable and
support interactive execution in a variety of languages. If mul-
tiple steps are necessary, we again recommend ordering the
files alphanumerically to disambiguate execution order.

As a final note, we suggest that all (pseudo-)randomized
computations throughout the process use a fixed seed, which
can be easily set by a user. This ensures that the entire system
is deterministic and can significantly aid in debugging and
reproducibility.

Proposal: Tools for data collection and distribution
Just as complex systems often require multiple software compo-
nents, they increasingly also require multiple data sets. Similar
to software, data sets can also change over time, either from ex-
tension or correction [40]. In addition, even small changes in the
data collection and processing pipeline can affect results. For
example, previous studies have shown that even the visualiza-
tion used in audio annotation can affect annotation quality [41].
Researchers also often process or clean annotations by remov-
ing outliers or aggregating annotations. These processes must
be documented to appropriately use and extend annotations.
Although many open-source principles can also be applied to
data, there is much work to be done regarding tooling and in-
frastructure to support OSS practices for data collection. This
section is both a position statement and a proposal to the com-
munity in which we outline what has been done and propose
what needs to be done to move forward regarding the tooling of
data collection and distribution.

project/
LICENSE.txt
README.txt
env.yaml (or requirements.txt)
data/

scripts/
01–data–augmentation.py
02–pre–process.py
03–model.py
04–evaluate.py

index–all.json

...
generated/

split01/

split02/

notebooks/

index–train.json
index–test.json
model_parameters.h5
results.json

01–analysis.ipynb

...

...

...

FIGURE 3. An example file structure for an MIR research project.

135IEEE SIgnal ProcESSIng MagazInE | January 2019 |

Data annotation
First, we propose that the research community should develop
and adopt standard, open-source tools for audio annotation.
This ensures not only that we are not replicating existing work
with several ad hoc annotation solutions but also that we are
following best practices and can extend existing data sets de-
veloped by other research groups.

In addition to following the OSS principles outlined ear-
lier in this article, these tools should also be configurable,
extensible, and web-based so that they can be easily deployed
without requiring users (annotators) to install software. Web-
based solutions enable easy distribution of audio and crowd-
sourced annotation, now a standard method for obtaining large
numbers of annotations. Although many of our data needs can
be met using strong or weak labeling tasks, some of our data
needs require more specialized, unforeseen tasks. Therefore,
these tools should be extensible, i.e., with the capability to sup-
port new tasks and workflows. Finally, the configuration of
these tools—instructions, workflow definitions, task configu-
rations, and so on—should also be stored in a single location in
a human-readable format.

A number of open-source desktop applications have been
already developed for annotation, such as Raven [42], Audac-
ity [43], or Tony [44], but only recently have we seen the emer-
gence of web-based tools for crowdsourcing. Audio Annotator
is a simple web-based front end for strong
labeling of audio with standard audio visual-
izations [41]. Although a good starting point,
its functionality is limited, and it is not eas-
ily extensible. Freesound Datasets is a new
web-based platform for crowdsourcing weak
labels of audio, hosted on https://freesound
.org [45]. However, it is currently limited to
Freesound data and also is not extensible. Zooniverse is the most
popular citizen science platform, with over a million registered
users [46]. Zooniverse supports audio content and audio visual-
izations, but the available task types are limited to weak labeling
and survey questions, and its extensibility is limited.

Data set file formats
As described in the “System Architecture and Component”
section, standardized tools for reading and writing data file
formats minimize the risk of parsing errors and ease distribu-
tion and use of data. There are several formats for encoding
music annotations (MusicXML [12], MEI [13], MPEG-7 [14],
and JAMS [15]), but these formats are primarily for managing
annotations for a single recording rather than collections of an-
notated audio. To increase transparency and usability of data
sets, we propose to develop a package to support collection
management. Only the raw annotations and audio would be
stored as data, and views could be defined to filter and process
the data for a specific task. For example, if a data set needs to
be cleaned to remove erroneous annotations or outliers, then
users could write a clean view of the data without discarding
information. Additionally, preregistered splits of the data could
be implemented as a view on top of an existing view. Data set

files would also contain standardized metadata and documen-
tation of the data set creation process.

Data documentation
To understand the content of data sets, use them appropriately,
and extend them when necessary, data sets must be thoroughly
documented. This motivates researchers to develop standard
reporting mechanisms and tools to facilitate the documenta-
tion of the data collection process. Although standards should
be developed and ratified by the community, the following are
possible items to include for each annotation:

 ■ annotation software and version
 ■ annotation software configuration
 ■ description of all tasks, including participant screening,

training, annotation tasks, and surveys
 ■ description of annotator recruiting
 ■ monetary (or other extrinsic) compensation mechanisms
 ■ anonymized annotator identifiers
 ■ time stamps
 ■ data cleaning or processing procedures
 ■ data synthesis procedures description and code (if applicable).

All such documentation should provide reasonable explana-
tions and justifications for the choices made. This again helps
the community understand the data and what it can be used
for. As a community, we should also determine screening and

demographic survey procedures and anno-
tator quality metrics. Once these have been
established, documentation tools, in com-
bination with standardized annotation file
formats, should be able to quickly aggre-
gate and display this information about the
population as a whole. Best practices for data
documentation have been proposed before in

MIR, although adoption by the community has been slow [47].
Recently, Gebru et al. [48] proposed a standardized data sheet
format for general machine-learning data sets, inspired by the
standardized data sheets that accompany electronic components.

Data distribution
Finally, we need tools to distribute, maintain, and index pub-
lic data sets. Although many of the requirements for data
are similar to those for software, data typically require more
storage than software, rendering many existing services
unsuitable. Data hosting should support versioning to sup-
port changes to data sets, provide digital object identifiers
(DOIs), and guarantee longevity for several decades to pre-
vent broken URLs and ephemeral data. These data require-
ments files would specify the data sets and versions required
by software, and they should be distributed along with the
software requirements files. There are currently several
hosting solutions that support large data sets, versioning,
and DOIs and guarantee decades of longevity (e.g., Zenodo
at https://zenodo.org, Figshare at https://figshare.org, Dryad
at https://datadryad.org, and Dataverse at https://dataverse
.org). Unfortunately, these solutions have yet to develop a
data management tool like we have described. However, it

First, we propose that
the research community
should develop and adopt
standard, open-source
tools for audio annotation.

136 IEEE SIgnal ProcESSIng MagazInE | January 2019 |

may be possible for a third party to build such a tool around
the existing infrastructure.

In addition to hosting and distribution, we also need a plat-
form for developing and maintaining data. At the minimum, this
would include an issue tracker for reporting errors and propos-
ing/discussing improvements to existing data sets. However,
this could also double as a platform for proposing and discuss-
ing the creation of new data sets. Although such functionality
would ideally be integrated into hosting services, this could also
be developed around existing infrastructure or supported with
existing platforms such as GitHub.

Conclusions
Although MIR has long been data driven and necessarily com-
plex because of the long chain of steps involved in bridging
audio signals and semantically meaningful representations,
we expect the core issues of system complexity to eventually
pervade all data-driven areas of signal processing. The general
architecture outlined in the “System Architecture and Compo-
nents” section is generic enough to capture most MIR use cases,
and, although different domains might exhibit slightly different
workflows, we expect that the overall system complexity issue
will arise across domains. The recommendations put forward
in the “Best Practices for OSS Research” section should serve
as a solid basis for improving the quality and reproducibility of
scholarly research. While we do not expect signal processing
researchers to become experts in software engineering, we fo-
cus here on software precisely because it is often overlooked as
a crucial component of research systems. Although most of our
recommendations concern software, we see data management
as the next frontier in improving data-driven research in general
and signal processing research specifically. Our proposal is in-
tended to resolve certain shortcomings in our current practices
for data set construction, but it may be readily adapted to dif-
ferent application domains. We encourage future researchers to
think carefully about data construction, preservation, and man-
agement issues moving forward.

Authors
Brian McFee (brian.mcfee@nyu.edu) received his B.S. degree
in computer science from the University of California, Santa
Cruz, in 2003 and his M.S. and Ph.D. degrees in computer sci-
ence and engineering from the University of California, San
Diego, in 2008 and 2012, respectively. He is an assistant pro-
fessor of music technology and data science at New York
University. His work lies at the intersection of machine learn-
ing and audio analysis. He is an active open-source software
developer and the principal maintainer of the librosa package
for audio analysis.

Jong Wook Kim (jongwook@nyu.edu) received his B.S.
degree in electrical engineering from the Korea Advanced
Institute of Science and Technology, Daejeon, and his M.S.
degree in computer science and engineering from University of
Michigan in 2009 and 2011, respectively. From 2012 to 2015,
he was a back-end software engineer at NCSOFT Corporation
and Kakao Corporation, South Korea, and he was a research

scientist intern at Pandora in 2017 and Spotify in 2018, focusing
on music recommender systems and neural music synthesis. He
is a Ph.D. candidate at New York University’s Music and Audio
Research Laboratory. His research interests include automatic
music transcription and music language models.

Mark Cartwright (mark.cartwright@nyu.edu) received a
B.M. degree in music technology from Northwestern Uni -
versity, Evanston, Illinois, in 2004. He received an M.A. degree
in music science and technology in 2007 from Stanford
University (CCRMA), California, and a Ph.D. degree in com-
puter science in 2016 from Northwestern University, where
his research focused on developing new interaction para-
digms for audio production tools. Currently, he is a postdoctor-
al researcher at New York University’s Music and Audio
Research Laboratory. He was previously a visiting researcher
at the Center for Digital Music at Queen Mary University of
London and an intern at Adobe’s Creative Technology Lab. His
research lies at the intersection of human–computer interac-
tion, audio signal processing, and machine learning.

Justin Salamon (justin.salamon@nyu.edu) received his
B.A. degree in 2007 in computer science from the University
of Cambridge, United Kingdom, and his M.Sc. and Ph.D.
degrees in computer science from the Universitat Pompeu
Fabra, Barcelona, Spain, in 2008 and 2013, respectively. In
2011, he was a visiting researcher at the Institut de Recherche
et de Coordination Acoustique/Musique, Paris, France. In
2013, he joined New York University as a postdoctoral
researcher, where he has been a senior research scientist since
2016. He is a senior research scientist at New York University’s
Music and Audio Research Laboratory and Center for Urban
Science and Progress. His research focuses on the application
of machine learning and signal processing to audio signals,
with applications in machine listening, music information
retrieval, bioacoustics, environmental sound analysis, and
open-source software and data.

Rachel Bittner (rachelbittner@spotify.com) received her
B.S. degrees in music performance and math at the University
of California, Irvine, her B.M. degree in math at New York
University’s Courant Institute, and her Ph.D. degree in music
technology in 2018 at the Music and Audio Research Lab at
New York University under Dr. Juan Pablo Bello. She was a
research assistant at NASA Ames Research Center, working
with Durand Begault in the Advanced Controls and Displays
Laboratory. She is a research scientist at Spotify in New York
City. Her research interests are at the intersection of audio sig-
nal processing and machine learning, applied to musical
audio. Her dissertation work applied machine learning to fun-
damental frequency estimation.

Juan Pablo Bello (jpbello@nyu.edu) received his B.Eng.
degree in electronics in 1998 from the Universidad Simón
Bolívar in Caracas, Venezuela, and in 2003 he received his
Ph.D. degree in electronic engineering from Queen Mary
University of London. He is a professor of music technology
and computer science and engineering at New York University.
His expertise is in digital signal processing, machine listening,
and music information retrieval, topics that he teaches and on

137IEEE SIgnal ProcESSIng MagazInE | January 2019 |

which he has published more than 100 papers and articles in
books, journals, and conference proceedings. He is the director
of the Music and Audio Research Lab, where he leads research
on music informatics. His work has been supported by public
and private institutions in Venezuela, the United Kingdom, and
the United States, including Frontier and CAREER Awards
from the National Science Foundation and a Fulbright scholar
grant for multidisciplinary studies in France. He is a Senior
Member of the IEEE.

References
[1] G. Tzanetakis and P. Cook, “Musical genre classification of audio signals,”
IEEE Trans. Speech and Audio Processing, vol. 10, no. 5, pp. 293–302, 2002. doi:
10.1109/TSA.2002.800560.

[2] B. L. Sturm, “Revisiting priorities: Improving MIR evaluation practices,” in
Proc. 17th Int. Society for Music Information Retrieval Conf., (ISMIR), New York,
7–11 Aug. 2016, pp. 488–494.

[3] T. Cho, R. J. Weiss, and J. P. Bello, “Exploring common variations in state of the
art chord recognition systems,” presented at the Sound and Music Computing
Conf., 2010.

[4] C. Raffel, B. McFee, E. J. Humphrey, J. Salamon, O. Nieto, D. Liang, and D. P.
W. Ellis, “mir_eval: A transparent implementation of common MIR metrics,” in
Proc. 15th Int. Society for Music Information Retrieval Conf., (ISMIR), Taipei,
Taiwan, 27–31 Oct. 2014, pp. 367–372.

[5] H. Pashler and E. Wagenmakers, “Editors’ introduction to the special section on
replicability in psychological science: A crisis of confidence?” Perspectives
Psychological Sci., vol. 7, no. 6, pp. 528–530, 2012.

[6] P. Vandewalle, J. Kovacevic, and M. Vetterli, “Reproducible research in signal
processing,” IEEE Signal Processing Mag., vol. 26, no. 3, pp. 37–47, 2009.

[7] J. B. Buckheit and D. L. Donoho, “Wavelab and reproducible research,” in
Wavelets and Statistics, A. Antoniadis, G. Oppenheim, and B. McFee, Eds. New
York: Springer, 1995, pp. 55–81.

[8] M. Owens and G. Allen, SQLite. New York: Springer-Verlag, 2010.

[9] M. Folk, A. Cheng, and K. Yates, “HDF5: A file format and I/O library for high per-
formance computing applications,” in Proc. Supercomputing, vol. 99, 1999, pp. 5–33.

[10] F. Bellard, M. Niedermayer, et al. (2012). Ffmpeg. [Online]. Available: http://
ffmpeg.org.

[11] E. de Castro Lopo. (2011). Libsndfile. [Online]. Available: http://www.mega-nerd
.com/libsndfile/

[12] M. Good, “MusicXML for notation and analysis,” Virtual Score:
Representation, Retrieval, Restoration, vol. 12, pp. 113–124, 2001.

[13] P. Roland, “The music encoding initiative (MEI),” in Proc. First Int. Conf.
Musical Applications Using, 2002, pp. 55–59.

[14] S.-F. Chang, T. Sikora, and A. Purl, “Overview of the MPEG-7 standard,”
IEEE Trans. Circuits Syst. Video Technol., vol. 11, no. 6, pp. 688–695, 2001.

[15] E. J. Humphrey, J. Salamon, O. Nieto, J. Forsyth, R. M. Bittner, and J. P.
Bello, “JAMS: A JSON annotated music specification for reproducible MIR
research,” in Proc. 15th Int. Society for Music Information Retrieval Conf.,
(ISMIR), Taipei, Taiwan, 27–31 Oct. 2014, pp. 591–596.

[16] B. McFee, E. J. Humphrey, and J. P. Bello, “A software framework for musical
data augmentation,” in Proc. 16th Int. Society for Music Information Retrieval
Conf., (ISMIR), Málaga, Spain, 26–30 Oct. 2015, pp. 248–254.

[17] M. Mauch and S. Ewert, “The audio degradation toolbox and its application to
robustness evaluation,” in Proc. 14th Int. Society for Music Information Retrieval
Conf., (ISMIR), Curitiba, Brazil, 4–8 Nov. 2013, pp. 83–88.

[18] J. Salamon, D. MacConnell, M. Cartwright, P. Li, and J. P. Bello, “Scaper: A
library for soundscape synthesis and augmentation,” presented at the Workshop on
Applications of Signal Processing to Audio and Acoustics, New Paltz, NY, Oct.
2017.

[19] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, et al. “Scikit-learn: Machine learning in Python,” J.
Mach. Learning Res., vol. 12, pp. 2825–2830, Oct. 2011.

[20] B. Whitman, G. Flake, and S. Lawrence, “Artist detection in music with min-
nowmatch,” in Proc. 2001 IEEE Signal Processing Society Workshop, 2001, pp.
559–568.

[21] B. McFee, C. Jacoby, E. J. Humphrey, and W. Pimenta. (2018). Pescadores/
pescador: 2.0.0. [Online]. Available: https://doi.org/10.5281/zenodo.1165998

[22] B. Van Merriënboer, D. Bahdanau, V. Dumoulin, D. Serdyuk, D. Warde-
Farley, J. Chorowski, and Y. Bengio. (2015). Blocks and fuel: Frameworks for deep
learning. arXiv. [Online]. Available: https://arxiv.org/abs/1506.00619

[23] D. Bogdanov, N. Wack, E. Gómez, S. Gulati, P. Herrera, O. Mayor, G. Roma,
J. Salamon, et al., “Essentia: An audio analysis library for music information retriev-
al,” in Proc. 14th Int. Society for Music Information Retrieval Conf., (ISMIR),
Curitiba, Brazil, 4–8 Nov. 2013, pp. 493–498.

[24] B. McFee, C. Raffel, D. Liang, D. P. Ellis, M. McVicar, E. Battenberg, and O.
Nieto, “librosa: Audio and music signal analysis in Python,” in Proc. 14th Python in
Science Conf., 2015, pp. 18–25.

[25] P. Brossier. (2009). Aubio, a library for audio labelling. [Online]. Available:
https://aubio.org/

[26] S. Böck, F. Korzeniowski, J. Schlüter, F. Krebs, and G. Widmer, “Madmom: A
new Python audio and music signal processing library,” in Proc. 2016 ACM
Multimedia Conf., 2016, pp. 1174–1178.

[27] G. Tzanetakis and P. Cook, “Marsyas: A framework for audio analysis,”
Organised Sound, vol. 4, no. 3, pp. 169–175, 2000. doi: 10.1017/S1355771800003071.

[28] J. Urbano, D. Bogdanov, P. Herrera, E. Gómez, and X. Serra, “What is the
effect of audio quality on the robustness of MFCCs and chroma features?” in Proc.
15th Int. Society for Music Information Retrieval Conf., (ISMIR), Taipei, Taiwan,
27–31 Oct. 2014, pp. 573–578.

[29] F. Chollet, et al. (2015). Keras. [Online]. Available: https://keras.io

[30] A. Mesaros, T. Heittola, and T. Virtanen, “Metrics for polyphonic sound event
detection,” Appl. Sci., vol. 6, no. 6, p. 162, 2016. doi: 10.3390/app6060162.

[31] A. Said and A. Bellogín, “Rival: A toolkit to foster reproducibility in recom-
mender system evaluation,” in Proc. 8th ACM Conf. Recommender Systems, 2014,
pp. 371–372.

[32] S. Böck, F. Krebs, and M. Schedl, “Evaluating the online capabilities of onset
detection methods,” in Proc. 13th Int. Society for Music Information Retrieval
Conf., Mosteiro S. Bento Da Vitória, Porto, Portugal, 8–12 Oct. 2012, pp. 49–54.

[33] S. Böck, “oneset_db.” Accessed on: Jan., 2018. [Online]. Available: https://
github.com/CPJKU/onset_db

[34] D. P. Ellis. (2006). PLP and RASTA (and MFCC, and inversion) in MATLAB
using melfcc.m and invmelfcc.m. [Online]. Available: http://www.ee.columbia
.edu/\~dpwe/resources/matlab/rastamat

[35] D. Sculley, G. Holt, D. Golovin, E. Davydov, T. Phillips, D. Ebner, V. Chaudhary,
M. Young, et al., “Hidden technical debt in machine learning systems,” in Proc.
Advances in Neural Information Processing Systems, 2015, pp. 2503–2511.

[36] G. Wilson, J. Bryan, K. Cranston, J. Kitzes, L. Nederbragt, and T. K. Teal,
“Good enough practices in scientific computing,” PLoS Computational Biology,
vol. 13, no. 6, 2017. doi: 10.1371/journal.pcbi.1005510.

[37] GitHub, Inc. No license. [Online]. Available: https://choosealicense.com/no-
permission/

[38] K. Beck, Test-Driven Development: By Example. Reading, MA: Addison-
Wesley, 2003.

[39] F. S. Chirigati, D. E. Shasha, and J. Freire, “ReproZip: Using provenance to
support computational reproducibility,” presented at the 5th USENIX Conf. Theory
and Practice of Provenance (TAPP’13), 2013.

[40] B. L. Sturm, “An analysis of the GTZAN music genre dataset,” in Proc. 2nd
Int. ACM Workshop on Music Information Retrieval With User-Centered
Multimodal Strategies, 2012, pp. 7–12.

[41] M. Cartwright, A. Seals, J. Salamon, A. Williams, S. Mikloska, D.
MacCbonnell, E. Law, J. Bello, and O. Nov, “Seeing sound: Investigating the
effects of visualizations and complexity on crowdsourced audio annotations,” Proc.
ACM on Human-Computer Interaction, vol. 1, no. 1, 2017. doi: 10.1145/3134664.

[42] Bioacoustics Research Program. (2014). Raven pro: Interactive sound analysis
software (version 1.5). [Online]. Available: http://www.birds.cornell.edu/raven

[43] D. Mazzoni and R. Dannenberg. (2000). Audacity. Avaliable: https://www
.audacityteam.org

[44] M. Mauch, C. Cannam, R. Bittner, G. Fazekas, J. Salamon, J. Dai, J. Bello,
and S. Dixon, “Computer-aided melody note transcription using the Tony software:
Accuracy and efficiency,” presented at the 1st Int. Conf. Technologies for Music
Notation and Representation, 2015.

[45] E. Fonseca, J. Pons Puig, X. Favory, F. Font Corbera, D. Bogdanov, A.
Ferraro, S. Oramas, A. Porter, and X. Serra, “Freesound datasets: A platform for
the creation of open audio datasets,” in Proc. 18th Int. Society for Music
Information Retrieval Conf. (ISMIR), Suzhou, China, Oct. 2017, pp. 486–493.

[46] K. Borne and Z. Team, “The Zooniverse: A framework for knowledge discov-
ery from citizen science data,” in Proc. AGU Fall Meeting Abstracts, 2011.

[47] G. Peeters and K. Fort, “Towards a (better) definition of the description of
annotated MIR corpora,” in Proc. 13th Int. Society for Music Information Retrieval
Conf., (ISMIR), Porto, Portugal, 8–12 Oct. 2012, pp. 25–30.

[48] T. Gebru, J. Morgenstern, B. Vecchione, J. W. Vaughan, H. Wallach, H.
Daumeé III, and K. Crawford. (2018). Datasheets for datasets. arXiv. [Online].
Available: https://arxiv.org/abs/1803.09010

 SP

